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Abstract

The aim of this thesis was to develop means to optimize the biochemical activity
of sourdough to achieve improved bread flavour, texture and shelf-life, and to
determine how the structure of fresh and aged bread is altered by the use of
sourdough. The influence of process conditions of prefermentation on
subsequent bread quality is clarified through this thesis.

The importance of an optimised sourdough process in improving the flavour and
texture of subsequent bread was demonstrated. The sourdough process had to be
optimised in a strain-specific manner to obtain improved flavour and texture.
Lactic acid bacteria fermented sourdoughs were more effective in tuning bread
quality compared to yeasted preferments if the appropriate conditions were
utilised. The ash content of flour and fermentation time were the main factors
regulating bread flavour and texture in all of the sourdough types studied. The
possibility to improve bread flavour by utilising sourdough with moderate
acidity and an enhanced level of amino acids was demonstrated in this study.
Bread volume and shelf-life were also improved by sourdough, which was
fermented with low ash content flour and with optimised fermentation time.

A new type of sourdough was presented: bran sourdough, which could effectively
compensate the negative effect of added wheat bran on bread volume and shelf-
life in high-fibre baking. An altered microstructure (improved protein network,
enhanced swelling of starch and modified degradation of cell wall components) of
bran sourdough breads, especially if made with enzymes, was related to improved
volume. A reduced staling rate of bran sourdough breads was further explained
due to reduced starch retrogradation and a slower loss of molecular mobility.

In conclusion, wheat bread flavour and texture were effectively modified using
optimised sourdough. Bran sourdough was introduced as a potential tool for the
future development of technologically and nutritionally superior raw materials
for all cereal foods, such as bread, breakfast and snack products.
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1. Introduction

The art of bread-making is ancient; Egyptians had over 50 different types of
cakes, unleavened breads, and bread leavened with beer foam or sourdoughs
(Jacob 1997). Traditionally, sourdough breads were made from brown or
wholemeal flours due to a lack of advanced milling technologies for the
production of endosperm wheat flour. Industrial wheat bread production started
at the beginning of last century, after the introduction of baker's yeast as a
superior leaving agent for bread production instead of using sourdough or
brewing yeast for leavening. Over decades, many different bread-making
processes have been developed, which have the common aim of converting
wheat flour, made from the endosperm part of kernel, and other ingredients into
a light aerated and palatable food.

The most important quality characteristics for wheat pan breads are high
volume, soft and elastic crumb structure, good shelf-life and microbiological
safety of the product (Cauvain 2003). In wheat products, textural characteristics
are mainly based on the formation of gluten network, which has the ability to
extend and keep the gas from yeast fermentation and makes a direct contribution
to the formation of a cellular crumb structure. Unfortunately, wheat bread is a
perishable product and fresh product quality starts to deteriorate immediately
after baking. Bread becomes stale largely because of the physical changes that
occur in the starch-protein matrix of the bread crumb.

The introduction of new methods for bread baking such as frozen dough baking
and partly baked products have created new challenges for obtaining good
product quality. There is a massive selection of baking additives such as
emulsifiers and enzymes, which can effectively improve particularly texture and
shelf-life of the breads on the market. However, most of these substances are
either E-numbered additives or produced with GMO-organisms, which does not
tally with current consumer trends preferring GMO-free, high-quality products
baked without chemical additives. Sourdough baking is an alternative to the use
of additives. Furthermore, recent results demonstrate the effectiveness of
sourdough fermentation in improving the nutritional value of cereal products
(Liukkonen et al. 2003, Kariluoto et al. 2004).
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In addition, the flavour of wheat bread has suffered greatly from intensive,
shorter bread-making methods and the flavour of bread made with traditional
longer processes is considered superior in comparison to short processes. The
overall flavour of bread is typically process-induced, and formed from relatively
tasteless raw materials during processing. Bread flavour is formed from
hundreds of different compounds, which themselves originate from the different
stages of the bread-making process such as raw materials, fermentation (both
preferments and fermentation during proving) and baking. Due to the complex
nature of bread flavour, it still remains a challenge for researchers after 30 years
of intensive research. The means to enhance the desired flavour attributes of
bread would be highly appreciated by the baking industry.

Wheat is the world's most important food grain. Wheat kernel can be divided
into three main parts: i) The endosperm, which forms 83% of the kernel, ii) the
bran which forms 14%, and iii) the germ which forms 3%. In general, wheat is
mainly consumed in bakery products manufactured from endosperm flour,
which has unique technological properties for creating superior, consumer
appealing product quality in terms of flavour and texture.

The endosperm part of cereal kernel, however, is nutritionally inferior to the
whole grain. Recent epidemiological findings have indicated a protective role of
whole grain foods against several western diseases (Jacobs et al. 1998, Liu et al.
2000, Pereira et al. 2002). Dietary fibre has long been considered the major
health protective component of grains. There is now increasing evidence also of
other protective compounds, such as oligosaccharides and phytochemicals,
which together with DF are concentrated in the outer layers of the grains. There
is consumer interest in the health aspects of food, including functional food
products with specific physiological functions of health relevance. However,
good sensory properties remain a prerequisite for any successful food, and
consumers expect food to fulfil other criteria such as safety and convenience.
Thus, the concept of whole grain baking, or at least enrichment with
nutritionally valuable parts such as wheat bran, would be highly beneficial also
in wheat baking.

The most common source of DF in wheat baking is cereal bran, especially wheat

bran. However, additions of cereal bran, especially in such amounts that health
benefits can be expected, cause severe problems in the flavour and texture. In
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addition, bran fraction is rich in spoilage organisms such as rope forming
bacteria Bacillus subtilis which increases the challenges to retain
microbiological safety of wheat breads supplemented with bran.

Acceptable loaf volume and shelf-life of high-fibre breads is difficult to
accomplish. Bran supplementation usually weakens the structure and baking
quality of wheat dough and decreases bread volume and the elasticity of the
crumb. The firmness of fresh fibre enriched bread has been reported to be 41%
higher compared to bread without bran (Laurikainen et al. 1998). It has been
suggested that the deleterious effects of fibre addition on the dough structure are
due to the dilution of the gluten network, which in turn impairs gas retention
rather than gas production. However, this well known effect of bran inclusion in
reducing the volume of bread cannot be explained simply in terms of the dilution
of gluten forming proteins (Gaillard and Gallagher 1988). According to Gan et
al. (1992), the bran materials in expanded dough appear to disrupt the starch-
gluten matrix and also restrict and force gas cells to expand in a particular
dimension. This greatly distorts the gas cell structure and may contribute to the
resultant crumb morphology, which is an important element of crumb texture.
Thus, the supplementation of dietary fibre, such as wheat bran, requires changes
in processing techniques for the production of baked goods with good consumer
quality.

Sourdough has a natural, additive-free image and lactic acid bacteria have been
used in food for thousands of years and are "generally regarded as safe". The
introduction of sourdough would be particularly suitable in cereal foods
containing dietary fibre rich plant tissues as both nutritional and technological
quality could be considerably enhanced in these products by utilising sourdough.

Sourdough is ancient way to improve flavour, texture and microbiological shelf-
life of bread, and is widely utilised in whole grain rye baking (Lorenz and
Brummer 2003). In wheat baking, the use of sourdough is optional (Récken and
Voysey 1995) and less common, most likely due to the milder flavour of
products made from endosperm wheat flour, which limits the amount of acidic
sourdough that can be used in wheat products. Contrary to acidic rye breads, the
majority of consumers accept only mild acidity in wheat breads. Thus, control of
the acidity level of wheat sourdoughs and subsequent breads is a premise for the
improvement of quality.
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The effects and mechanisms of sourdough fermentation are, however, complex
and numerous, and not yet fully understood. In the future, effective use of
sourdough, for example in additive replacement purposes, will require a
designed fermentation processes in which complex biochemical changes during
sourdough fermentation can be controlled to obtain improved product quality. It
has been shown for some time, however, that the fermentation process does
remarkably more to the properties of bread than simply produce acids (Wood et
al. 1975). Furthermore, profound changes in the flour and dough matrix created
during the sourdough process can have both desired and undesired consequences
in final product quality; improved product quality is obtained only under the
optimised conditions of sourdough fermentation (Clarke et al. 2003).

The current study was initiated to improve conditions of using sourdough
technology in wheat bread baking and extend the application range of sourdough
technology to wheat bran.

1.1 Sourdough: microbiology and the process
1.1.1 Microflora of sourdough

Sourdough is a process in which flour and water (and other ingredients) are
fermented with microbes originating from preceding sourdough, commercial
starter culture, bakery equipment or from flour.

Spontaneous dough fermentation starts by mixing flour with water without
adding a starter culture or portion of a preceding sourdough (mother dough). The
microflora of such dough depends on the microflora of the raw materials used
and the prevailing hygienic conditions, and is variable in terms of kind, origin
and storage conditions of the flour, as well as the technological parameters of the
fermentation process applied. For example, whole grain cereals and 100%
extraction rye flour may contain 10°~10°CFU of unspecified bacteria per gram;
in which 10*-10°CFU® belongs to genus Lactobacillus (Salovaara 2004). The
dominating microbes in spontaneously fermented doughs are homofermentative
lactobacilli and pediococci, which are found both in wheat and rye sourdoughs at
the level of 3 x10°-3 x10° CFU™. Typical homofermentative lactic acid bacteria
(= LAB) in spontaneous sourdoughs are Lb. casei, Lb. delbrueckii, Lb.
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farciminis, Lb. plantarum, Pc. pentosaceus. Typical heterefermentative LAB are
Lb. brevis, Lb. buchneri, and Lb. fermentum (Stolz 2003). Various yeast strains
have also been isolated from spontaneous fermentations such as S. cerevisiae
and Pichia satoi (Beech and Davenport 1971).

Commercial sourdough processes do not rely on fortuitous flora but on the use
of commercial starter cultures or a portion of the preceding sourdough (mother
dough). Inoculation of the sourdough with a starter increases the number of
lactic acid bacteria to 10'—10°CFU%, which gives little possibility for growth of
contaminating organisms, including those which are imported from flour. The
range of commercial starter culture includes (1) pure starter cultures in powder
form, i.e., freeze-dried single strain or mixed strain cultures, and (2) starter
cultures that are active sourdoughs. The use of pure start cultures has not yet
gained wide acceptability among bakers, and back-sloping methods (using seed
from previous sourdough as a starter) are much more common, probably due to
both economical and technological reasons. The sourdough fermentations are
performed as single- or multistage processes. During the week, the mother
dough is removed from the active sourdough, which is used to start the
sourdough fermentation for the next day (Stolz 2003).

Sourdough bacteria cannot be seen as an independent group of bacteria existing
only in sourdough. Rather they can be described as a group of specially adapted
varieties of LAB that are also common in other habitants. The most relevant
bacteria isolated from sourdough belong to the "genus" Lactobacillus (Stolz
2003). Isolated lactobacilli strains can be obligate homofermentative strains,
facultative heterofermentative lactobacilli or facultative heterofermentative
strains. Homofermentative strains ferment hexoses to produce mainly lactic acid.
Many heterofermentative strains can also ferment pentosans to produce lactic
acid, acetic acid and ethanol. The formation of end products with
heterofermentative strains is dependent on the processing conditions of
sourdough and type of heterofermentative strain (Rocken et al. 1992).

The most common lactic acid bacteria species found in sourdoughs are Lb.
acidophilus, Lb. farciminis, Lb. delbrueckii (obligate homofermentative), Lb. casei,
Lb. plantarum, Lb. rhamnosus (facultative heterofermentative), Lb. brevis, Lb.
sanfransicencis and Lb. fermentum (obligate heterofermentative) (Salovaara 2004).
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Yeast flora of sourdough is more homogenous. Universal sourdough yeast
appears to be Candida milleri or strains closely related to it. Saccharomyces
cerevisiae is also often reported (Stolz 2003).

Associations of yeasts and lactic acid bacteria are often encountered or used in
the production of beverages and fermented foods (Gobbetti 1998). The most
well known example of stable co-existence of yeast and lactic acid bacteria is the
presence of Candida milleri and Lb. sanfransiscencis in San Francisco
sourdough (Kline and Sugihara 1971), in Dutch wheat sourdoughs (Nout and
Creemers-Molenaar 1987) and in German commercial sourdough (Bocker et al.
1990). Interaction of these two micro-organisms is based on the fact that Lb.
sanfranciscensis mainly ferment maltose and leave glucose for the use of yeast,
which in turn is incapable of assimilating maltose. Furthermore, the low pH of
sourdough has little effect on the growth of C. milleri (Génzle et al. 1998).

1.1.2 Different types of sourdoughs/preferments

Two main types of wheat preferments exist in industrial use (Lorenz and
Brummer 2003):

1) Yeasted preferment (or yeasted sourdough), in which yeast is used to ferment
wheat flour for 4-16 hours at room temperature (22-26 °C). Acidity
development is modest and originates from the natural flora of flour, yeast or
bakery equipment.

2) Actual sourdough in which lactic acid bacteria (+ yeast) are used to ferment
flour for up to 24 hours at 25-35 °C.

Yeasted preferments are always produced in a one stage process, but the
utilisation of actual sourdough can be achieved in one stage, multiple stages or
in a continuous processes. The current trend, however, is towards one stage
sourdoughs (Lorenz and Brummer 2003).

18



1.1.3 Use of sourdough/yeasted preferments in wheat products

Yeasted preferments are used more commonly than acidic wheat sourdoughs. A
typical example of yeasted preferment is the sponge and dough method, which is
widely used in the Unites States. In this procedure, 2/3 of the total amount of
flour, part of the water and the yeast is mixed loosely and fermented for up to 5
hours. Then, the sponge is combined with the rest of the formula ingredients and
mixed into developed dough. Another example of a yeasted preferment is the
"sur poolish" method in France. In this method, the prefermentation method
consists of a semiliquid mixture of flour and water (50/50), with approximately
one third of the total flour quantity used at this stage. Baker's yeast at levels of
about 0.5 to 1.0% (based on flour) is added to the mixture and fermented for five
hours at 22 °C (Molard et al. 1979). Similar types of yeasted preferments are
commonly used in Finland and in Germany (Valjakka et al. 2003, Lorenz and
Brummer 2003). It is noteworthy, however, that yeasted preferment benefits
lactic acid fermentation of fortuitous flora originating from flour if the
fermentation conditions (mainly extended fermentation periods, higher
temperature and use of flour with higher ash content) allow the build-up of
natural bacteria population.

Traditional acidic sourdoughs are used in Mediterranean countries and in the
area of San Francisco in the United States. Examples of wheat products, in
which particular product quality is based on the use of sourdough, are Italian
Christmas cake, Panettone (Sugihara 1977), San Francisco sourdough bread
(Kline et al. 1970) and soda crackers (Sugihara 1977). Wheat sourdough is used
currently in Italy (Corsetti et al. 2000), Germany (Seibel and Brummer 1991)
Spain (Barber and Baquena 1989) and France (Infantes and Tourner 1991). In
Finland, acidic wheat sourdoughs are utilised in only a few bakeries. At the start
of the 21st century, bread-making with sourdough constitutes a very small
fraction of all bread manufactured; it is estimated e.g., in France, that only 3% of
all bread produced is manufactured by using sourdough (Poitrenaud 2003).
Successful utilisation of wheat sourdough demands skilled personnel and careful
control over the process to obtain high quality products and is thus a much more
demanding way to improve product quality in comparison to baking additives.
However, the effectiveness of wheat sourdough in improving flavour, texture
and nutritional quality is unique, and the utilisation of sourdough has gained
popularity in recent times (Kulp 2003).
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Amount of preferment/sourdough to be used in subsequent bread dough varies
usually between 5-40% (of dough weight); the lowest values being typical for
acidic sourdough and highest for yeasted preferment. A special type of sourdough
bread is known in Italy and in Spain, in which microbes are added directly to the
bread dough and whole dough is fermented up to 9 hours before baking.

1.2 Influence of sourdough fermentation on wheat flour
and dough; biochemical changes

The sourdough process depends on numerous factors including, among other
things, the composition of microflora, fermentation and enzymatic activities and
flour characteristics as presented in Figure 1. These factors do not act separately
but in an interactive way, adding to the complexity of the system. Thus, many
factors simultaneously affect the processes involved in sourdough fermentation
such as the formation of acidity, the production of volatile compounds and the
degradation of carbon and nitrogen compounds (Martinez-Anaya 1996b). The
level and intensity of these modifications during sourdough fermentation
determines subsequent bread quality.

e Strains e Ash content
o Activity e Enzyme activity
Starter Flour Water
‘l' ‘1’ ‘1’ o Temperature
_ e Dough yield
Sourdough fermentation ¢ o Amount of starter
e Time
‘1’ o Nutrients

e Lactic acid, acetic acid, other acids = pH effect
e Amino acids, peptides
¢ Volatile compounds

e Enzymes
¥
Bread dough —> [ ¢ Modified L
e enzymatic activity
o dough rheology
o water distribution
Improved bread quality €— |« Enhanced flavour

Figure 1. Sourdough fermentation and influencing factors.
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1.2.1 Acidification

Sourdough fermentation is based on lactic acid and alcoholic fermentation
depending on the composition of microflora and fermentation conditions.
Typical pH and TTA values of acidic wheat sourdough are 3.6-3.8 and 8-13,
respectively (Brummer and Lorenz 1991). The typical content of lactic acid is
600-800 mg/100 g sourdough and for acetic acid 80—160 mg/100 g sourdough
(Barber et al. 1992, Hansen and Hansen 1994b). For yeasted preferment, typical
pH and TTA-values are 4.7-5.8 and 3-9, respectively.

The main factor regulating acidification is the amount of fermentable carbohydrates.
White flours have very low quantities of free sugars, about 1.55-1.84% (sucrose,
maltose, glucose, glucose, fructose and oligosaccharides) but the endogenous a-
amylase activity, started during mixing, increases initial maltose levels by ten- to
fifteenfold. The alfa-amylase activity of wheat flour depends on the extraction rate
and quality of flour; wholemeal flour and especially the bran fraction having the
highest enzyme activity (Martinez-Anaya 2003).

Sugars used by lactic acid bacteria as an energy source vary by species and even
by strain. The most common lactic acid bacteria identified in sourdoughs are
capable of fermenting pentoses, hexoses, sucrose and maltose, although some
species such a Lb. sanfransiscensis, are specific to maltose. Furthermore, Lb.
sanfransiscensis hydrolyzes maltose and accumulates glucose in the medium in
a molar ratio of about 1:1 (Martinez-Anaya 2003). Some lactic acid bacteria
common in sourdough systems are fructose negative and grow faster in maltose
than in glucose, Lb. plantarum prefers maltose and glucose over fructose for
rapid growth and weakly ferments sucrose. Heterofermentative lactobacilli such
Lb. sanfransiscensis, Lb. brevis and Lb. fermenti are stimulated by oxygen,
which shifts the metabolic pathway from ethanol to an acetate route and thus
enhances acetic acid production. Proton acceptors, such as fructose, have a
similar type of effect as they push the metabolism towards the acetate kinase
pathway, producing traces of mannitol and an increase in acetic acid. The
efficiency of fructose as a proton acceptor depends on concentration,
temperature, and dough consistency (Martinez-Anaya 2003).

In alcoholic fermentation, various yeast strains produce carbon dioxide and
ethanol in anaerobic conditions according to the Emden-Meyerhof-Pathway
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from the same sugars as lactic acid bacteria. Glucose, fructose and sucrose are
fermented similar rates by S. cerevisiae, because yeast contains active invertase
rapidly hydrolyzing sucrose into glucose and fructose already at the dough mixing
stage. Yeast strains (e.g Torulopsis holmii) lacking invertase do not ferment
sucrose. Maltose is fermented by yeast only at later stages of fermentation, after
the major portion of glucose and fructose has been utilised (Kulp 2003). Typical
sourdough yeasts, C. milleri and S. exiguus, do not ferment maltose.

As typical sourdough often consists of both yeast and lactic acid bacteria, the
interaction of yeasts and lactobacilli is important for the metabolic activity of
sourdough. When Lb. sanfransiscensis, Lb. brevislinderi or Lb. plantarum are
associated with maltose negative yeast such as S. exiguus, the lactobacilli
completely takes up maltose and bacterial cell yield increases and acid
production is not inhibited. In association with S. cerevisiae, a decrease in
bacterial metabolism occurs due the faster consumption of maltose and
particularly glucose by the yeast, which reduces the availability of glucose when
both micro-organisms grow together (Martinez-Anaya 2003). The presence of
yeast has been reported to diminish acid production (Brummer 1988).

The production of acids depends also on other things such as fermentation
temperature, time and dough yield. Optimum temperatures for the growth of
lactobacilli are 30—40 °C depending on strain (Stanier et al. 1987) and for yeasts
25-27 °C. In general, a higher temperature, a higher water content of sourdough
and the utilisation of wholemeal flour enhances the production of acids in wheat
sourdoughs (Brummer and Lorenz 1991, Lorenz and Brummer 2003).

1.2.2 Proteolysis

The proteolytic enzymes present in the sourdough system degrade various cereal
proteins (Spicher and Nierle 1988, Thiele et al. 2002). This proteolysis produces
free amino acids, which may act as flavour precursors (Spicher and Nierle 1984,
Schieberle 1990a, Gobbetti et al. 1995). Gluten proteins determine, to a great
extent, the rheological properties of wheat doughs and texture of wheat breads.
The proteolytic degradation of gluten proteins also alters the formation of the
gluten network (Kawamura and Yonezawa 1982), which can result in weak and
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sticky dough. Even minor changes in the gluten structure can cause considerable
changes in dough properties (Pizzinatto and Hoseney 1980).

Contradictory theories have been proposed about whether the proteolytic activity
in sourdoughs originates from the LAB or from the cereal materials present in
the sourdough. Spicher and Nierle (1988) concluded that only one third of the
proteolytic activity in a rye sourdough originated from cereal enzymes. Other
studies have also shown that proteinases from LAB can liberate soluble protein
hydrolysates from gluten proteins (Gobbetti et al. 1996, Wehrle et al. 1999).
However, recent results indicate that the proteolytic activity of lactobacilli is
negligible compared to that of the wheat flour in a wheat sourdough system
(Loponen et al. 2004, Thiele et al. 2002, 2003, 2004). The endogenous cereal
proteases of flours have been shown to degrade cereal prolamins under acidic
conditions (Kawamura and Yonezawa 1982, Brijs et al. 1999). In addition, the
role of cereal proteolytic enzymes on the rheological properties of dough has
been well established (Pizzinatto and Hoseney 1980, Kawamura and Yonezawa
1982, Lin et al. 1993).

Substantial hydrolysis of gliadinin and glutenin proteins occurs during
sourdough fermentation due to pH-mediated activation of cereal enzymes;
especially aspartic proteinase appears to be active in the conditions of wheat
sourdough (Thiele et al. 2003, Loponen et al. 2004). Furthermore, sourdough
fermentation results in a solubilisation and depolymerisation of the gluten
macropolymer (Thiele et al. 2004). Cereal proteinases have been shown to be
active at pH 3.7, but show no activity at pH 5.5. Thus, proteolysis during
sourdough fermentation is highly dependent on formation of acids. Lactic acid
bacteria contribute to overall proteolysis during sourdough fermentation by
creating optimum conditions for activity of cereal proteinases. Furthermore,
lactic acid bacteria with high proteolytic activity contribute to the hydrolysis of
wheat proteins in a strain-specific manner as e.g. substrate specify varies
between different LAB strains (Di Gagno et al. 2003), and liberation of certain
amino acids such as ornithine may require specific LAB strain to be utilised
(Thiele et al. 2002).

Increased proteolysis during sourdough fermentation leads to the liberation of

amino acids in wheat and rye doughs (Spicher and Nierle 1988, Collar et al.
1991, Gobbetti et al. 1994). Generally, sourdough fermentation with lactic acid
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bacteria results in an increase of amino acid concentrations during fermentation,
whereas dough fermentation with yeast reduces the concentration of free amino
acids (Thiele et al. 2002). The level of individual amino acids in wheat doughs
depend on the pH level of the dough, fermentation time and the consumption of
amino acids by the fermentative microflora (Thiele et al. 2002). An
accumulation of amino acids can occur only if proteolysis exceeds the demand
of amino acids for the growth of microbes. Glutamic acid, isoleucine and valine
are essential for the growth of Lb. brevis and Lb. plantarum. Each individual
amino acid, except for lysine, cysteine and histidine, is suitable for the growth of
yeasts, which thus expresses a much stronger demand on amino acids and low
molecular weights peptides during fermentation. At the beginning of
fermentation, proteolytic activity is low due to non appropriate pH conditions; at
this stage, yeast follows a log phase of growth that induces a strong demand for
nitrogen. Lactic acid bacteria also have a long lag phase and develop metabolic
activities at a slow rate during the first 4 h. Thus, the accumulation of amino acids
is not observed until the later stages of fermentation (Martinez-Anaya 2003).

In wheat sourdoughs, Lb. brevis linderi, Lb. sanfranciscencis, Lb. brevis and Lb.
plantarum have been reported to increase the levels of aliphatic, dicarboxylic,
and hydroxyl amino acids (Collar et al. 1991, Gobbetti et al. 1994). The yeasts S.
cerevisiae and S. exiguus decrease the total level of amino acid in a similar way,
the latter being more effective in amino acid removal from the dough (Spicher
and Nierle 1984). The combination of yeast and lactic acid bacteria shows
intermediate values for total amino acid levels. The estimated content of free
peptides of sourdough with Lb. brevis or Lb. plantarum is lower than the
estimated amount of amino acids. Reactivity of peptides is higher during
fermentation in comparison to amino acids, and both of the above-mentioned
strains reduce the content of peptides during fermentation, especially if S.
cerevisiae is associated with these LAB (Mascaros et al. 1994). Furthermore, LAB
fermentation has been reported to affect the size distribution of peptides; the
presence of lactobacilli decreases the content of larger peptides and increases that
of smaller molecules such as dipeptides and amino acids (Thiele et al. 2003).

The proteolytic activity of wheat sourdough depends on the microbial starter and
the processing conditions. For wheat sours, the extraction rate of flour and the
fermentation temperature have been reported to be the main factors with positive
influence on the level of free amino acids and on the accumulation of
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hydrophobic and basic amino acids. Dough yield has also been reported to
influence the level of amino acids; soft doughs contain a lower amount of amino
acids (Martinez-Anaya 2003). The positive influence of wholemeal flour on
amino acid liberation is probably based on location and a higher activity of
cereal aspartylic proteinase, as well as other cereal proteases in the outer layers
of the cereal kernel (Loponen et al. 2004).

1.2.3 Production of volatile compounds

Volatile compounds are produced both in lactic acid fermentation and in
alcoholic fermentation, but the levels of these compounds are much higher in
yeast fermentation (Hansen and Hansen 1994b, Meignen et al. 2001). Lactic acid
bacteria produce volatile compounds in a strain-specific manner; each strain has
its own profile of volatile compounds. Homofermentative lactobacilli are
characterised by the high production of diacetyl, acetaldehyde, hexanal and
heterofermentative strains are characterised by the production of ethyl acetate,
alcohols and aldehydes. Isoalcohols (2-methyl-1-propanol, 2,3-methyl-1-
butanol), with their respective aldehydes and ethylacetate, are characteristic
volatile compounds of yeast fermentation (Damiani et al 1996). Association of
lactic acid bacteria and yeast results in a synenergistic increase of alcohols in
comparison to fermentation with yeast alone. The main bacterial volatile
compounds, ethylacetate and carbonyls are significantly decreased (Martinez-
Anaya 2003). For example, the association of Lb. brevis ssp linderi, or Lb.
plantarum, and S. cerevisiae increases the formation of yeast fermentation
products such as 1-propanol, 2-methyl-propanol and 3-methylpropanol and the
number of aroma compounds detected (Gobbetti et al. 1995). All volatiles
formed do not affect the final flavour of the bread. Generally, it is believed that
compounds having a high flavour dilution factor (FD) will have a significant
impact on the final odour (Schieberle 1996). 3-methylbutanol and 2-
phenylethanol have been reported to be the most important flavour active
compounds formed in yeast fermentation (Gassenmeier and Schieberle 1995).
Acetic acid, butanoic acid, phenylacetic acid, 2- and 3-methylbutanoic acid, and
pentanoic acid have been reported to be important flavour active compounds
formed during sourdough fermentation (Czerny and Schieberle 2002).
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It is possible to control the formation of volatile compounds, besides choosing
the appropriate starter culture, by adjusting fermentation conditions such as time,
temperature, flour extraction rate and dough consistency. In sourdough
fermented with mixed cultures, raising the temperature from 25 °C to 35 °C,
increased yeast fermentation. At 25 °C, ethyl acetate, acetic acid and lactic acid
were formed; whereas at 30 °C, ethanol, 2-methyl-1-propanol and 3-methyl-1-
butanol were typical products. However, increasing the temperature further to
35 °C did not modify the flavour profile (Gobbetti et al. 1995). In firm dough,
volatile compounds are formed by lactobacilli, whereas in soft doughs, ethanol
and ethylacetate are predominant with high levels of isoalcohols in dough
containing heterofermentative strains. These compounds are assumed to be
formed due to yeast fermentation, which can proceed further without the
formation of acetic acid. A high ash content of flour has been reported to
increase the amount of volatile compounds in mixed fermentations (Hansen and
Hansen 1994a, Czerny and Schieberle 2002). This has been proposed to be due
to the presence of different levels of certain flavour components already
occurring in the flour and to the metabolic changes that take place during lactic
acid fermentation. Information about the effect of fermentation time on the
formation of volatile compounds is limited, even though there is a general
assumption that longer processing (fermentation) times enhance the flavour of
the final product. Gobbetti et al. (1995) reported an increase in the levels of
volatile compounds in acidic sourdoughs when the fermentation time was
extended from 3 to 9 hours. However, after 24 hours of fermentation, the amount
of volatile compounds had reduced, probably due to the evaporation of volatile
compounds from the dough. Schieberle (1996) reported that during 16 hours of
fermentation in the yeasted preferment, the amount of 3-methylbutanol and
2-phenylethanol increased during first 8 hours and then ceased during last 8
hours. The lack of amino acid precursors was proposed to explain the
phenomenon.

1.2.4 Modification of dietary fibre components
The influence of sourdough on fibre content (both soluble and insoluble) and
quality is important from both nutritional and technological points of view. From

a nutritional point of view, for example, the molecular weight of B-glucan (the
main soluble fibre in oats and barley) has been postulated to be relevant for the
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cholesterol lowering effect of oats. From a technological point of view, high
molecular weight soluble arabinoxylans have been linked to improved volume
and softness in wheat baking (Courtin and Delcour 2002).

The fermentation of barley and oat fibre concentrates (rich in B-glucan) with LAB
has been reported to decrease the content of insoluble fibre (IF) in barley and oats.
Based on the measured viscosities, the content of soluble fibre in barley fibre
concentrate did not change during fermentation, whereas the content of soluble
fibre in oat fibre concentrate decreased. However, the molecular weight of [-
glucan was apparently not affected. (Lambo et al. 2005). Opposing results were
obtained by Degutyte-Fomins et al. (2002), who reported an increased solubility of
beta-glucan in fermented oat bran suspension and a decreased viscosity of water-
soluble fraction in bran ferment. The controversial results might be due to the
different acidity levels obtained (pH 4.0 for oat bran concentrate and 5.2 for oat
bran) and the differences in the chemical composition and enzyme activity of the
preferments. Boskov-Hansen et al. (2002) reported reduced dietary fibre content
and increased solubility of arabinoxylans during imitated rye sourdough
fermentation. The mechanism for reducing the content of DF is no clear, but it is
postulated to be due to the ability of microorganisms to produce extracellular
enzymes that are either cell-free or cell-associated (Schwarz 2001).

The sourdough fermentation of rye increased the amount of soluble pentosans
and decreased the molecular size of pentosans (Harkoénen, unpublished results)
most likely due to a lower pH (Héarkonen et al. 1995). In wheat sourdough
baking, the influence of commercial pentosanases on the molecular weight of
arabinoxylans was shown to be dependent on starter type (Devesa and Martinez-
Anaya 2001). The influence of processing conditions or starter culture on
insoluble or soluble pentosans during wheat sourdough fermentation is not
known. However, the addition of pentosans extracted from wheat bran has been
reported to improve bread volume (Zhen et al. 2003).

1.2.5 Production of exopolysaccharides
Recently, it has been reported that certain lactic acid bacteria are able to produce

exopolysaccharides, which might have a positive affect on bread volume and
shelf-life (Korakli et al. 2001, Tieking et al. 2003). Dough should contain, for
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example, xanthan and dextran between 0.1-2% d.w in order to induce positive
changes in bread texture. As sourdough or preferments are generally used at the
level of 5-40% (depending on the sourdough type), the content of
exopolysaccharides should be rather high. Furthermore, the acidity level of
sourdough can only be moderate to avoid negative effects on texture.

Microbial exopolysaccharides (=EPS) are utilised in the food industry,
particularly the dairy industry. Microbes produce slime to protect themselves
from drying out and other stress factors (Salkinoja-Salonen and Lounatmaa
2002). It is generally agreed that EPS influence product texture, mainly due to
their ability to influence viscosity of the product. For example, the typical
texture of Finnish milk product "viili" (pudding type fermented milk product) is
due to exopolysaccharides produced by certain lactic acid bacteria (Lactococcus
lactis ssp. cremoris and Leuconostoc mesenteroides). The best known microbe-
originated EPS’s are dextran, xanthan and levan and are produced by bacteria.
The production of these compounds in sufficient amounts during sourdough
fermentation would create the possibility to replace hydrocolloids in baking.
Hydrocolloids have been reported to improve bread quality (Rosell et al. 2001). As
Tieking et al. (2003) characterised the ability of several sourdough originated LAB
to produce EPS, some of the reported benefits of sourdough on bread quality may
be based on the formation of these compounds. More research, however, is needed
to clarify the role of EPS producing strains in sourdough baking.

1.2.6 Influence of sourdough on dough rheology

The utilisation of sourdough has fundamental effects on dough rheology at two
levels: in sourdough itself, and in subsequent bread dough containing sourdough
(at the level of 5-40%). At the sourdough level, fermentation causes decreased
elasticity and viscosity (Kawamura and Yonezawa 1982, Wehrle and Arendt
1998, Clarke et al. 2004). At the final dough level, the addition of sourdough has
been reported to cause less elastic and softer doughs; effect of being more
pronounced with longer fermentation times (Clarke et al. 2004). A decreased
resistance to extension and increased extensibility has been reported for doughs
containing sourdough (Di Gagno et al. 2003).
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Enzymatic activity, particularly protease activity, and the formation of acids are
the main causes for observed rheological changes both in sourdough and in final
bread doughs. Chemical acidification has been shown to increase the
solubilisation of proteins due to a positive net charge in acidic conditions (Maher
Galal et al. 1978). Under optimal mixing conditions, chemically acidified
doughs showed more elastic behaviour (Wehrle et al. 1997) and increased
softness and extensibility of gluten (Schober et al. 2003). However, in the
sourdough process, acidity development is progressive over time (not instant as
in chemically acified doughs) allowing cereal (and microbe) originated enzymes
to affect dough texture. According to recent results (Clarke et al. 2004, Thiele et
al. 2004), the main factor determining the rheology of doughs containing
preferment is the activity of cereal proteases with acidic optima. As the actual
weakening of the gluten structure has been shown to take place in doughs
containing sourdough (Thiele et al. 2004), it is very likely that solubility of
pentosans and the formation of exopolysaccharides have a major role in
determining dough and subsequent bread texture in products containing
preferment. Also, there is a strong indication that the level of rheological changes
taking place in these doughs (and subsequent influences on bread quality) can be
controlled by adjusting fermentation time (Clarke et al. 2004) and the ash content
of flour during the prefermentation process (Collar et al. 1994b).

1.3 Sourdough as a tool for tailoring bread quality
1.3.1 Flavour

Flavour is simultaneous perception of taste, odour and trigeminal nerve response
(Lawless and Heymann 1999). The four classical basic tastes are sweet, salty,
sour and bitter. The diversity of flavours is caused by volatile compounds in the
headspace of the product and mediated by smell. Different types of odours and
tastes tend to mask or suppress each other, which is often called mixture
suppression. Tastes may also increase the apparent intensity of odours, or odours
may increase the apparent intensity of taste (Noble 1996).

Flavour is one of the most appreciated sensory attributes in bread (Caul 1972).

Bread flavour is composed of hundreds of volatile and non-volatile compounds,
which originate from different parts of the baking process such as fermentation
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and the baking step, and from ingredients. Many alcohols, aldehydes, ketones,
acids, esters, ether derivates, furan derivates, hydrocarbons, ketones, lactones,
pyrazines, pyrrol derivates and sulphur compounds serve as flavour stimuli
(Maga 1974, Folkes and Grahamshaw 1981, Schieberle 1996). Bread flavour can
be divided into crumb and crust flavour; their role in the overall flavour
impression of bread is still controversial even though crust flavour seems to
dominate overall flavour due to its intensity in the aroma of fresh bread. Some
potential compounds that influence bread flavour are presented in Table 1. The
pyrazine and pyrrol derivates have been found to contribute strongly to the
flavour of bread crust (Schieberle and Grosch 1987, Schieberle and Grosch
1989). When bread is eaten, the overall sensory impression is also influenced by
the colour and textural attributes of the bread.

None of the identified compounds can singly be considered as the key
component of bread aroma (Drapron and Molard 1979), but they seem to act in a
synenergistic way, with their relative proportions being determinant. On the
other hand, the presence of a determined substance does not mean that it
participates in creating the flavour; the concentration must exceed the detection
threshold which, in turn, can be modified by other substances present (Meilgaard
et al. 1999).

Bread flavour is formed during processing which occurs when relatively non-
aromatic flour undergoes several changes during the baking process. White
wheat flour also furnishes a small amount of volatile compounds and aroma
precursors, although their contribution to bread flavour is estimated to be small
(Drapron and Molard 1979). With wholemeal flour, the amount of volatile
compounds as well as amino acids is considerably higher (Czerny and
Schieberle 2002). Fermentation and baking are the main sources of flavour of
bread and both steps are essential (Hansen and Schieberle 2005). Volatile
compounds are generated from previous precursors present in ingredients or
resulting from enzymatic or mechanical degradations (El Dash 1971, Drapron
and Molard 1979). The most important precursors of the identified compounds
are sugars and amino acids (El Dash 1971, Spicher and Nierle 1988, Martinez-
Anaya 1996b, Thiele et al. 2002). The formation of bread flavour during the
baking process is illustrated in Figure 2.
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Fermentation of sugars by yeasts during the bread-making process leads to a
large number of volatile compounds that are supposed to be responsible for the
distinctive characteristics associated with bread flavour: bread from unfermented
doughs has a different aroma from that made from fermented dough (Jackel
1969) and has a much smaller amount of volatile compounds (Frasse et al.
1993). Fermentation is essential in the creation of normal bread flavour: if
baker's yeast is replaced with baking powder, the crumb structure and the baking
times are normal, but the bread has a completely unacceptable flavour in
comparison to yeast-raised bread (Hansen et al. 1989, Schieberle 1989). With
bread leavened with baking powder, the crust of the bread particularly shows an
odour note reminiscent of day-old bread and the cracker-like, roast odour note is
lacking. When the flavour compounds of chemically and yeast leavened breads
are compared, one striking difference is that 2-acetyl 1-pyrroline is a minor
component in chemically leavened bread, but a major component in yeast
leavened bread. 2-acetyl-1-pyrroline was identified as one of most important
character impact compounds of bread crust flavour and the presence of this
compound creates roasty, cracker-like flavour in the crust. (Schieberle and
Grosch 1985). Yeast also converts free amino acids by Erlich's mechanism to
flavour compounds such as alcohols. These alcohols have one carbon less than
the corresponding amino acids. For example, valine, leucine and phenylalanine
are converted respectively to isobutanol, 3-methylbuthanol and 2-phenylethanol
(Molard 1994, Gassenmeier and Schieberle 1995).

During baking, thermal reactions such as caramelisation and the Maillard
reaction, promote crust flavour and colour (Drapron and Molard 1979,
Schieberle 1989). The important role of baker's yeast as a source of the
precursors in  the formation of  2-acetyl-l1-pyrroline and  2-
acetyltetrahydropyridine (important character impact flavour compounds of
crust) has been well elucidated (Schieberle 1990a, Schieberle 1990b). These
compounds are formed both inside and outside the yeast cell when sugars and
amino acid degradation products react with each other during the Maillard
reaction in baking. According to Schieberle (1990a), 2-acetyl-1-pyrroline is
created in the reaction between pyruvaldehyde (generated by yeast sugar
metabolism) and 1-pyrroline (a product of the Strecker degradation of either
proline or ornithine).
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Table 1. Some of the important flavour compounds of wheat bread.

Compound Location Flavour origin

Crumb Crust
Acetic acid x> X’ Fermentation
Methional x* x* Baking, Stecker's degradation
E)-2-nonenal xH x* Degradation of lipids

g p

(E,E)-2,4 decadienaal x4 Degradation of lipids
Diacetyl 1234 x*? Fermentation
Phenylacetaldehyde x* x* Baking, Stecker's degradation
Acetaldehyde X Fermentation
2-methylpropanol x* Stecker's degradation
3-methylbutanol x" X Baking, Stecker's degradation
3-methylbutanal x4 Baking, Stecker's degradation
2-methylbutanal X Baking, Stecker's degradation
Benzylethanol x*
2-phenylethanol x>
Ethanol x* Fermentation
l-octen-3-one x4 x* Degradation of lipids
2-acetylpyridine X Baking, Maillard's reaction
4-(Z)heptenal x*? Degradation of lipids
2-acetyl-1,4,5,6- x* Baking, Maillard's reaction
tetrahydropyridine
4-hyrdoxy-2,5-dimethyl- L4 Baking, Maillard's reaction
3(2H)-furanone
2-acetylpyrroline x4 Baking, Maillard's reaction

References: 'Schieberle 1996, *Hansen and Hansen 1996, *Frasse et al. 1993, *Schieberle
and Grosch 1991, °Folkes and Grahamshaw 1981)
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Figure 2. Formation of bread flavour during the baking process.

In general, the utilisation of wheat sourdough is assumed to improve flavour, but
controversial results have been published (Salovaara and Valjakka 1987, Collar et al.
1994a, Hansen and Hansen 1996, Meignen et al. 2001, Thiele et al. 2002). Yeasted
preferment is not assumed to enhance bread flavour significantly (Lorenz and
Brummer 2003) but other views do exist on the topic (Molard et al. 1979). Research
has focused, during recent decades, on the formation of flavour active volatile
compounds or precursors during prefermentation processes, and the impact on the
sensory profile of subsequent bread has been studied less, particularly by utilising
appropriate sensory methods such as quantitative descriptive analysis.

The influence of sourdough on bread flavour is based on three main factors: 1)
formation of acidity, ii) formation of flavour precursors such as amino acids, iii)
formation of volatile compounds. As the amount of sourdough/preferment varies
5-40% of final bread dough, the impact on bread flavour depends on acidity
level, level of free amino acids and important flavour compounds in sourdough.

The formation of acidity has a profound effect on bread flavour. A minor amount
of acetic acid has been claimed to enhance wheat bread flavour (200 ppm, Molard
et al. 1979). Both lactic acid and acetic acid cause a pungent, unpleasant flavour in
higher concentrations (Molard and Chagnier 1980, Salovaara and Valjakka 1987,
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Lilja et al. 1993). The maximum amount of acids in wheat bread without
decreased pleasantness ratings has been reported to be 0.35% (flour weight),
which corresponds pH 4.9 and TTA-value 6.0, respectively. Furthermore,
increased acidity enhanced overall taste intensity (Lilja et al. 1993).

A high amount of free amino acids in sourdough has been linked to an enhanced
intensity of the overall flavour of bread, and enhanced intensity of roasted
flavour (Martinez-Anaya 1996a, Thiele et al. 2002). The formation of ornithine
during sourdough fermentation has particularly been shown to be a major factor
in the enhanced roasted flavour of subsequent bread (Thiele et al. 2002). Proline
has also been established to be major precursor for 2-acetyl-1-pyrroline
responsible for the roasted flavour of crust. The formation of peptides, with
unpleasant sensory characteristics, during sourdough fermentation has also been
proposed (Martinez-Anaya 1996b). The levels of leucine and phenylalanine in
yeasted preferments have been shown to be key factors enhancing the formation
of 3-methylbuthanol and 2-phenylethanol responsible for crumb flavour notes
(Gassenmeier and Schieberle 1995).

The formation of certain volatile compounds in preferments/sourdoughs is
generally considered to be important for the sensory profile of bread. Chemically
acidified doughs with corresponding levels of amino acids as in sourdoughs
improve bread flavour only slightly (Thiele et al. 2002), which indicates the
significant role of sourdough originated volatile compounds in flavour
improvement. Intensive formation of volatile compounds, and particularly the
formation of flavour active compounds, has been established in yeasted
preferments (Frasse et al. 1993, Gassenmeier and Schieberle 1995, Hansen and
Hansen 1996). Thus, the compounds responsible for bread flavour are
synthesised already during the prefermentation process and the total amount of
these compounds in subsequent bread dough is increased by the use of
preferment. However, the influence of these yeasted preferments on the intensity
of bread flavour has been reported to be minor (Brummer and Unbehend 1997,
Lorenz and Brummer 2003), and long yeast fermentation has actually been
reported to decrease, for example, the roasted flavour of bread in comparison to
a shorter process (Zehentbauer and Grosch 1998). The level of key crumb
odourants, 2-phenylethanol and 3-methylbuthanol, originating from preferments
varies 14-48% depending on the amount of yeast and water in preferments
(Gassenmeier and Schieberle 1995). As yeasted preferments usually have
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modest levels of acids and amino acids, their impact on bread flavour is most
likely purely due to volatile compounds present in the preferment. Yeast
fermentation during proofing (at bread-making stage) has clearly a very strong
effect on final bread flavour, but volatiles originating from yeasted preferment
might have a less important role in final sensory profile of the bread.

The importance of fermentation conditions during the sourdough process for the
sensory profile of subsequent bread is obvious. The ash content of flour utilised
in prefermentation is a major factor determining the intensity of subsequent
bread flavour attributes (Rouzaud and Martinez-Anaya 1997); a higher ash
content of flour results in enhanced intensity of taste and aroma. However,
sourdough breads had better sensory quality if the low ash content of flour was
used in the sourdough process (Rouzaud and Martinez-Anaya 1997, Collar et al.
1994b). Thus, a higher ash content of flour strongly increases the metabolic
activity of sourdough (formation of acids, amino acids and volatile compounds)
but the resulting stronger flavour of bread is not necessarily accepted and liked
by consumers. The influence of fermentation time during prefermentation on the
sensory profile of subsequent bread is not well reported, but longer fermentation
times are generally assumed to create stronger flavours in comparison to no-time
or short time processes in wheat baking (Molard 1994).

1.3.2 Volume and shelf-life
1.3.2.1 Specific volume

Loaf-specific volume is a primary quality characteristic of bread (Maleki et al.
1980). The texture of wheat bread depends heavily on the formation of the
gluten network, which traps gas from yeast fermentation, and makes a direct
contribution to the formation of the cellular crumb structure of the subsequent
bread (Cauvain 2003). Gluten proteins of wheat create unique viscoelastic
properties of dough, which allow dough to expand due to the formation of
carbon dioxide during fermentation and, at the same time, retain most of this gas
inside the dough texture. Also, other biopolymers of flour, starch and pentosans,
have to be swollen and solubilised in appropriate amounts to obtain the optimal
bread texture.
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The utilisation of sourdough has been reported both to decrease (Salovaara and
Valjakka 1987; Armero and Collar 1996; Rouzaud and Martinez-Anaya 1997)
and to increase (Hansen and Hansen, 1996, Corsetti et al. 1988, 2000, Crowley
et al. 2002, Clarke et al. 2002) bread volume. A key to improved volume has
been proposed to be a type and level of acidification (Clarke et al. 2002). The
utilisation of sourdough bread improved bread volume more efficiently in
comparison to its chemically acidified counterpart (Clarke et al. 2002). Also,
acidic sourdough has been shown to be more effective in improving bread volume
in comparison to yeasted preferment (Corsetti et al. 2000). However, if the acidity
of sourdough is further increased, bread volume diminishes (Barber et al. 1992).
Even though many sourdough microbes produce carbon dioxide, it is generally
assumed that the utilisation of sourdough improves gas retention and not the gas
production in bread dough (Hammes and Génzle 1998, Clarke et al. 2002).

The influence of sourdough on bread volume has been proposed to be mainly
due to enzymatic reactions taking place during fermentation. During sourdough
fermentation, pH drops gradually allowing amylolytic, proteolytic,
lipoxygenases, peroxidases, catalases and polyphenol oxidases to modify dough
components over a time period of 820 hours. Thiele et al. (2004) demonstrated
that gluten macropolymers are solubilised and degraded during sourdough
fermentation, which resulted in a softer and less elastic texture of bread dough
containing sourdough (Clarke et al. 2002). Clarke et al. (2004) demonstrated
also that reduced firmness and elasticity occurs over time in preferments and in
subsequent bread doughs irrespective of the presence of acid or lactic acid
bacteria. The resulting weaker gluten structure indicates that improved volume
in sourdough breads must have other factors than the integrity of gluten network
to create better gas holding properties. Weaker gluten might allow the higher
expansion of dough, but this usually decreases gas retention. Improved volume
in sourdough breads may be partly explained by the solubilisation of
arabinoxylans and by the production of exopolysaccharides (Korakli et al. 2001).

Thus, it is possible to improve a specific volume by utilising wheat sourdough if
the amount of acidity, as well as the level of other metabolites and the degradation
of gluten, is at appropriate levels. Accordingly, fermentation conditions have a
significant influence on bread volume: the utilisation of wholemeal flour in
sourdough fermentation has been reported to decrease bread volume (Salovaara
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and Valjakka 1987, Rouzaud and Martinez-Anaya 1997) and fermentation time
has to be optimised in a strain-specific manner (Clarke et al. 2003).

1.3.2.2 Shelf-life

Bread is a perishable commodity, whose shelf-life is normally limited by
physiochemical deterioration called staling, leading to a hard and crumbly
texture and a loss of fresh-bake flavour. The staling phenomenon has been
intensively studied for decades, but a scientific and technological understanding
of the mechanism of staling, however, is far from clear (Chinachoti 2003).

Bread texture becomes harder largely due to physical changes that occur in the
starch-protein matrix of the bread crumb. Retrogradation is the process by which
starch amylopectin reverts to a more ordered state after gelatinisation. The
solubility of starch decreases, the structure of starch granules becomes rigid and
shrunken and part of the gelatinised starch amylopectin crystallises. The crumb
characteristics of the bread change: the crumb becomes hard, coarse and
crumbly. Even though starch retrogradation has been shown to be the primary
cause of bread firming, other factors such as the state of proteins and the water
content of dough affect the staling rate (Martin and Hoseney 1991, Martin et al.
1991, Davidou et al. 1996, Zobel and Kulp 1996). Other flour components, like
pentosans and lipids, and added ingredients like fat, emulsifiers, sugars and
enzymes affect crumb softness of fresh bread and its shelf-life. Water is also
assumed to have a significant role in the staling process. Water is more abundant
in the swollen amorphous regions of starch, facilitating local polymer chain
mobility (plasticisation) and the subsequent crystallisation and retrogradation
(Chinachoti and Vodovotz 2001). Water distribution within regions in gluten,
amorphous and crystalline starch are assumed to play an important role in starch
and gluten rigidity.

Utilisation of sourdough in wheat baking has been reported both to decrease and
increase, or to have no impact, on shelf-life of wheat bread; influence being
dependent on fermentation conditions and the process utilised (Armero and
Collar 1998, Corsetti et al. 1998, 2000, Crowley et al. 2002, Kulp 2003). The
influence of sourdough on bread staling is not completely elucidated and
controversial results are partly due to the different use and interpretation of
terminology. For example, improved shelf-life is related in some cases to
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delayed starch retrogradation even though the actual firmness of sourdough
breads after storage is higher in comparison to the control bread (Barber et al.
1992, Corsetti et al. 1998). After all, from a consumer’s point of view, increased
softness is considered to be reduced staling.

The effect of sourdough is partly based on improved volume, as a positive
correlation has been established between softness and volume (Maleki et al.
1980). Pure acidity does not explain improved softness as chemically acidified
breads (with comparable acidity levels obtained in sourdoughs) stale faster
compared to sourdough breads (Clarke et al. 2003) or at a similar rate to the
control bread (Corsetti et al. 2000). However, the acidity level of sourdough and
subsequent bread dough seems to be an important factor, as strong acidity
provides a harder crumb structure and milder acidity increases softness (Barber
et al. 1992, Crowley et al. 2002). However, the rate of starch retrogradation has
been reported to be lower for sourdough breads, even with strong acidity
(Corsetti et al. 1998, Barber at al. 1992). This might be partly explained by the
formation of low molecular weight dextrins in acidic conditions, which have
been postulated to interfere with the starch retrogradation process (Rouzaud and
Martinez-Anaya 1997). On the other hand, sourdough has been reported to
reduce starch hydrolysis by inhibiting endogenous flour alfa-amylases. This
limits the liberation of low molecular mass dextrins, which interfere with starch
crystallisation and delay bread staling (Siljestrom et al. 1988). Thus, depending
on sourdough type and the acidity level obtained, sourdough may either enhance
or decrease starch retrogradation.

The significant role of strain-specific properties of LAB has been proposed to
explain observed differences in the staling of sourdough breads (Corsetti et al.
1998, 2000), because different sourdough breads, with comparable acidity
levels, had varying staling rates (in terms of firmness and starch retrogradation).
LAB strains possessing proteolytic and amylolytic properties were most
effective in delaying staling (Corsetti et al. 1998). Furthermore, recently Korakli
et al. (2003) demonstrated the ability of certain sourdough originated LAB of
producing exopolysaccharides, many of which are potential anti-staling
substances. Also, the solubilisation of arabinoxylans during sourdough
fermentation might reduce bread staling as pentosans have been postulated to
prevent starch-gluten interactions responsible for staling (Gray and Bemiller
2003). The combined use of exogenous enzymes (alfa-amylase and xylanase)
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and sourdough in the same baking process have been reported to enhance the
rate of acidification, improve bread volume and retard bread staling in white
wheat baking (Martinez-Anaya et al. 1998, Corsetti et al. 2000, Di Cagno et al.
2003). In high-fibre baking, the influence of the above-mentioned combination
treatment has not been reported.

1.3.2.3 Prevention of rope spoilage

Rope spoilage is the most important spoilage of bread after mouldiness. It is
usually caused by Bacillus sp., especially Bacillus subtilis and Bacillus
licheniformis (Kirschener and Von Holy 1989). Both B. subtilis and B.
licheniformis cause a potential risk to foodborne illness when present at levels of
10° CFU® in bread crumb (Kramer and Gilbert 1989). This level has been
reported to occur after only two days of storage at room temperature (Rosenquist
and Hansen 1998). Furthermore, some B. licheniformis strains were confirmed to
be toxigenic (Salkinoja-Salonen et al. 1999). However, not all B. subtilis strains
cause ropiness, Rocken and Voysey (1993) reported that 48% of 25 B. subtilis
strains isolated from bakery sources were able to cause rope within seven days
of storage at 37 °C. Rope forming strains have been reported to differ from other
strains by higher degrees of heat resistance spores, faster growth rates in bread
crumb, and enhanced protease and amylase production during growth (Rocken
and Voysey 1993).

In general, rope spoilage is noticed as an unpleasant sweet odour similar to that of
rotting melons, following by the discolouration of bread crumb, usually in patches
that vary from yellow to brown. Finally, the crumb looses its structure; it becomes
sticky and soft. The intensity of symptoms is, however, strain-specific and this
sometimes makes it difficult to detect rope spoilage in time (von Holy et al. 1988).

Rope spoilage of wholemeal bread has been reported to happen more frequently
than the spoilage of white wheat bread, possibly due to higher spore counts of
bran fractions (Eyles et al. 1989). Thus, the control of growth of rope forming
bacteria is an important issue when the wholemeal flour of bran fractions are
utilised in bakery products. As the current trend is to avoid chemical
preservatives also in wholemeal baking, there has been a significant increase in
the rope spoilage of wheat bread (Voysey and Hammond 1993).
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Control of the growth of Bacillus species in bread is a difficult task because they
have a common distinctive feature of forming endospores. These are inactive or
dormant stages of the organism, which have a unique degree of resistance to
environmental stresses such as UV, ionising irradiation, disinfectants, hydrogen
peroxide, osmotic stress and heat, as well as hydrostatic pressure (Rosenquist
and Hansen 1995). Thus, any sanitary or other means to lower Bacillus counts
originating from raw materials or bakery equipment are, in most cases
inefficient, for lowering the level of Bacillus counts in sufficient amounts.
Furthermore, the baking stage in the oven usually activates these endosperms
present in dough to grow instead of killing them (Rosenquist 1996).

One effective means to limit the germination and growth of Bacillus is to
increase acidity, which creates an unfavourable environment for the survival of
endospores. When pH was lowered from 6.86 to 4.62 with acetate, the thermal
destruction of spores of B. subtilis was increased tenfold (Gradel et al. 1976).
Acidity can be increased by adding acidulants or by sourdough fermentation.
The most effective acids are propionic acid and acetic acid. Lactic acid has been
reported to be less effective (Rosenquist and Hansen 1998) in agar tests. Lactic
acid bacteria can also produce antimicrobial compounds (bacteriocins) such as
nisin, which have the potential to inhibit germination and the growth of Bacillus
species (de Vuyst and Vandamme 1993). However, lactic acid bacteria with a
capability to produce bacteriocins have not been very effective in sourdough
breads, and the inhibitory effect of sourdough has been reported to be mainly
due to the production of acids (Rosenquist and Hansen 1998).

The acidity level of sourdough and subsequent bread dough seems to be
important for the inhibition of rope spoilage. The addition of 10% of sourdough
with pH-values of subsequent bread from 4.96-5.24 and TTA-valued from 3.0—
4.7 did not prevent rope spoilage. The addition of 15% of sourdough with pH-
values of subsequent bread from 4.55-4.77 and TTA-valued from 4.6-5.1
prevented rope spoilage (Rosenquist 1996). It is noteworthy that the effective
acidity level of enhanced microbial shelf-life does not meet the acidity criteria
for a good flavour of wheat sourdough bread, which have been set to TTA
values from 2.8 to 4.34 (Collar et al. 1994a).
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1.4 Aims of the study

Sourdough fermentation has been studied intensively during recent decades, but
is still not a well-understood process due to its complicated nature, and designed
sourdough processes are not easily achieved. An understanding of acidity
formation and its relation to other biochemical changes during sourdough
fermentation, in particular, would create the possibility to control the activity of
sourdough and subsequent bread quality attributes such as flavour and texture.

The aims of this thesis were

e To develop means to optimise sourdough fermentation at the
biochemical level during the prefermentation process itself and at the
product level of subsequent bread to obtain improved flavour, texture
and shelf-life.

e To establish the most important biochemical changes during sourdough
fermentation for improved bread flavour.

e To establish potential of bran fermentation to compensate negative
effects of bran supplementation in high-fibre baking.

e To relate the texture and shelf-life of high-fibre sourdough wheat bread

to structural changes in the starch-protein matrix and the retrogradation
of starch.

41



2. Materials and methods

Raw materials and experimental procedures are described in detail in the original
Publications -V, and only a brief summary is presented below.

2.1 Raw materials and process conditions
2.1.1 Flours and wheat bran

Two different white wheat flours were used in Publications I-V. Furthermore,
wholemeal wheat flour, wheat flour with medium ash content and wheat bran
were used in the preparation of sourdoughs in Publications I-V. The properties
of different flours are presented in Table 2. The amount of total and soluble
fibre, total pentosans, soluble pentosans and beta-glucan for WF 2 and wheat
bran are presented in Publication III. Methods for the determination of chemical
composition are presented in Publication III. Farinograph measurements were
performed in duplicate according to the AACC standard method (1998).

Table 2. Properties of wheat flours used in Publications I-V.

Quality test WF1* WF2 WMF MaF
Protein content (N*5.7), % 11.7 12.03 11.86 14.6
Ash content, % 0.61 0.7 1.82 1.22
Wet Gluten 27.2 28.0 nd**

Falling number 286 275 nd 271
Farinograph

Absorption, % 61.5 63 nd 66.2
Dough development time, 1.5 2 nd 5.75
min

Stability, min 4 8 nd 8.0
Publication L 1T nLIv,v LIl LI

* WF= wheat flour, WMF= wholemeal wheat flour, MaF=wheat flour with medium ash
content, ** nd= not determined
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2.1.2 Recipe and other raw materials
Reference breads
Three different types of reference bread were used in this study:

a) Reference bread for sourdough breads (Reference 1). This bread contained
75% white wheat flour. A detailed recipe is presented in Publication II.

b) Reference breads (2) for wheat breads supplemented with 20% wheat bran
(f.b). These included white wheat bread (reference 2a) and wheat bread
containing 20% untreated bran (reference 2b). Detailed recipes are presented
in Publications III and I'V.

¢) Reference breads (2) for breads containing Bacillus bacteria. These included
reference white wheat bread without added Bacillus bacteria (Reference 3a)
and reference bread with added Bacillus spores (3b). Detailed recipes are
presented in Publication V.

Sourdough breads
Three different types of sourdough bread were used in this study:

a) Sourdough breads in Publication II. These breads contained 20% sourdough
on dough basis. Microbial strains, as well as the ash content of flour,
fermentation time and temperature during the sourdough process were varied
according to the experimental design detailed in Publications I and II.

b) Bran sourdough breads with and without enzymes. These breads contained
20% bran sourdough on flour basis as detailed in Publications III and IV.
Furthermore, a combination of bran sourdough and enzymes was included in
Publication IV.

¢) Sourdough breads with varying degrees of acidity (Publication V). These
breads contained 10-20% sourdough fermented with different antimicrobial
strains to obtain high or low levels of acidity with a particular strain. Detailed
recipes are presented in Publications V.
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2.1.3 Process conditions

Sourdough processes

3 different sourdough types and processes were used in this study:

a)

b)

Wheat sourdoughs with varying degrees of flour ash content, length of
fermentation time and level of fermentation temperature. The above
mentioned parameters were varied according to experimental design and
sourdoughs were fermented with Lb. plantarum, Lb. brevis, S. cerevisiae or
combinations of yeast and lactic acid bacteria. Sourdough had a constant
dough yield and amount of added microbial strain. Details of these
sourdoughs are presented in Publications I and II.

Bran sourdoughs (2) were prepared by fermenting milled bran with yeast or
with yeast and Lb. brevis. Bran sourdough was fermented for either 4 hours
at 28 °C (yeasted bran preferment) or 16 hours at 25°C (bran sourdough with
yeast and lactic acid bacteria). Details of these sourdoughs are presented in
Publications III and I'V.

Wheat sourdoughs with varying degrees of acidity. The acidity of sourdoughs
was controlled by adjusting the ash content of flour, fermentation time and
temperature according to the experimental design. Details of these
sourdoughs are presented in Publication V.

Ready sourdoughs were stored for a maximum of 1 hour at 4 °C and used in
subsequent baking without delay.

Dough processing

Flour, water, sourdough (If included in the recipe) and other ingredients were

mixed with a Diosna spiral mixer or Kenwood table mixer (Publication V) to

obtain optimal dough consistency. The optimal mixing time and water absorption

were determined by farinograph and with test bakings for every dough type. After

20-30 minutes floor time at a constant temperature and humidity, the dough was

divided into pieces of 400 g, which were moulded into loaves with a conical

rounder and bread moulder. In Publication V, moulding was performed by hand.
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Loaves were proofed in tin pans at a constant temperature and humidity for 45—60
minutes according to bread type and baked at 200-220 °C for 20 minutes. Details
of the baking process for each bread type are presented in Publications I1-V.

2.1.4 Microbes and utilised microbial methods
The lactic acid bacteria and the yeasts utilised in sourdough fermentations are
summarised in Table 3. In rope spoilage studies, target organisms were Bacillus

subtilis (VTT E-96699) and Bacillus licheniformis (VTT E-978813).

Table 3. Microbial strains utilised in the study.

Microbial strain Origin Publications

Lb. brevis L 62 Dried commercial starter, I, 1V, V
C.H. Hansen, Denmark

Lb. brevis VTIT E-P5612 VTT's culture collection, I-11
isolated from rye
sourdoughs

Lb. plantarum VTT E-78076 VTT's culture collection, -1,V
isolated from rye
sourdoughs

S. cerevisiae VTT B-81047 VTT's culture collection, I-II
isolated from rye
sourdoughs

Baker's yeast Commercial dried yeast 11, IV
Fermipan, Gist-Brocades,
Netherlands

Pc. pentosaceus VTT E-90390 VTT's culture collection, v
isolated from rye
sourdoughs

Commercially dried lactic acid bacteria and yeast were added to sourdoughs as
such (Publications III and IV). Commercial LAB culture contained
approximately 2%¥10'° CFU/ g of culture (according to the manufacture), and
utilised amount (0.162 g /450 g of bran sourdough) provided addition level of
7.2 x 10° CFU/g of sourdough for LAB in III and IV. In I, II and V in-house
grown cultures were added at the level of 107 CFU/g of sourdough and yeast at
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the level of 10° CFU/g of sourdough, respectively. Amount of each LAB was at
the level of 10’ CFU/g and for yeast at the level of 10° CFU/g when sourdough
was fermented with yeast+LAB. Preparation of the culture filtrates for
sourdoughs (strains from VTT culture collections) was performed as described
in I, II and V. The growth ability of selected LAB in sourdoughs was ensured
with AP-PCR and cultivation methods.

Screening of antimicrobial activity of Lb. brevis L 62, Lb. plantarum VTT E-
78076, Pediococcus pentosaceus VTT E-90390 against several Bacillus species
was performed by turbidometer tests, described in detail in Publication V.

2.2 Biochemical analysis of sourdoughs

Several chemical parameters were measured in sourdoughs: pH, TTA (I-V),
content of lactic acid and acetic acid (I), concentration of amino acids and the
concentration of selected volatile compounds (I). The impact of these
compounds on subsequent sourdough bread flavour and texture, as well as
microbiological shelf-life, were described in this study.

2.2.1 Acidity measurements

The pH and TTA were measured with titrimetric analysis (Standard Methoden
fur Getreide, Mehl und Brot 1978) with a TitroLine Alpha 471217 (I-V). Lactic
acid and acetic acid were extracted from sourdoughs and the amounts
determined enzymatically using Boehringer Mannheim kits (I) or high-pressure
liquid chromatography (V). All samples were analysed in duplicate.

2.2.2 Amino acids

Free amino acids were extracted with water from sourdoughs and proteins were
precipitated with sulphosalisylic acid. 19 Amino acids were quantified by high-
pressure liquid chromatography and post column derivatisation was performed
with phthaldialdehyde according to Dong and Gant (1985). The samples were
analysed in duplicate (I).
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2.2.3 Volatile compounds

The potential flavour active volatile compounds were analysed in sourdoughs
using dynamic HS/GC/MS (I). For dynamic headspace analysis, a saturated
sodium chloride solution was used to stop the fermentation before freezing and
to transfer the volatile compounds from the samples to the headspace (the salting
out effect). Sourdough samples were frozen immediately after adding the salt
solution and analysed later. Before analysis, samples were thawed and allowed
to stabilise for 2 hours at room temperature (25 °C).

After being thawed, stabilised samples’ volatile compounds were purged from
the headspace vials into a headspace sampler, which was interfaced with
GC/MS. Compounds were identified on the basis of their mass spectra, and their
amounts were quantified using selective ions for each compound from total ion
chromatogrammes against a standard solution mixture series, which were
prepared into 30% sodium chloride solution. The samples and standards were
analysed in duplicate.

2.3 Analysis of bread texture

Both macroscopic and microscopic methods were utilised to study the structure
of fresh and aged breads. The specific volume and hardness (II, III, IV) and
microstructure (bran breads) were studied from fresh breads. The staling of
bread was followed by measuring crumb firmness (II, III, IV). Staling of bran
breads were also measured in IV by following changes in the crystallisation of
amylopectin (DSC), increase in the signal from the solid phase (NMR) and light
microscopy.

2.3.1 Instrumental analysis of bread texture
After 2 hours of cooling, loaf volume (determined by rape seed displacement)
and weight were measured (II, III, IV). The specific volume was calculated by

dividing the volume by weight. A minimum of three parallel loaves were
measured and the average loaf volume was calculated for each sample.
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The crumb firmness of fresh and stored breads was measured to assess the
potential shelf-life of the breads (II, III, IV). Bread crumb firmness during
storage was determined as the maximum compression force (40% compression,
AACC 1998, modified method 74—09) using the Texture Profile Analysis (TPA)
(Texture Analyser, Stable Micro Systems, Godalming, England). Eight bread
slices (originating from 3 loaves) were measured and the results were expressed
as mean values. The height of each bread slice was 2.5 cm and the edges of the
slices were cut off before measurement.

2.3.2 DSC and NMR

For the measurement of starch retrogradation, fresh and stored breads (supplemented
with 20% bran) were cut into four pieces, and a sample (10 mg) was taken from
each one and tightly packed into an aluminium pan. The pan was closed with a lid
and weighed. Calorimetric measurements were performed with Mettler DSC 820
within the temperature range of 10-90°C. The heating rate was 10°C/min. The
endothermic peak was integrated and enthalpy (J/g dry starch) was calculated (IV).

For NMR measurements (IV), fresh and stored bran breads were cut into four
pieces, and a sample was removed from each and placed into a glass tube. The
sample was packed tightly with a glass rod and the tube sealed. The
measurements were performed with Maran Ultra 23 MHz NMR spectrometer
using VT gradient probe. The FID signal of the NMR measurement was resolved
into three components: one fast decaying (T2 typically of the order of tens of
microseconds), and two components with a slower decay (T2 up to a few
milliseconds). The intensity of the fast decaying component was taken as the
solid signal and the intensities of the two others were combined to represent the
liquid signal. Staling was seen as an increase in the S/L ratio indicating the
increased rigidity of macromolecules in bread.

2.3.3 Microscopy
The microstructure of breads supplemented with bran (III, IV) was studied by

light microscopy. Both fresh (111, IV) and aged breads (IV) were studied in order
to examine the starch-protein matrix under the microscope in different bran
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breads during storage. Pieces of bread crumb were removed from the middle of
the loaf, embedded in agarose, fixed in glutaraldehyde in phosphate buffer,
dehydrated in a series of ethanol solutions (50%, 70% and 95%), embedded in
Historesin and sectioned with a microtome. For fluorescence microscopic
examination, the bread sections (4 um) were stained with specific fluorochromes.
Protein was stained with aqueous Fuchsin Acid and B-glucan was stained with
aqueous Calcofluor White. Calcofluor stains intact cell walls blue. Fuchsin Acid
stains proteins red. Starch remains unstained and appears black.

For bright field microscopy, the sections were stained with Light Green and with
diluted Lugol’s iodine solution. Light Green stains protein green. lodine stains
the amylose component of starch blue and amylopectin brown, respectively. The
samples were examined with an Olympus BX-50 microscope (Tokyo, Japan).
Micrographs were obtained using a SensiCam CCD camera and the image
analysis program.

2.4 Analysis of sensory attributes of sourdough bread

The sensory experiments of wheat sourdough breads (II) were carried out using
quantitative descriptive profiling (Lawless and Heymann 1999). The vocabulary
of the sensory descriptors was developed separately reflecting attributes typical of
wheat bread. The selected attributes of the sensory profile described the texture
and flavour (simultaneous perception of odour, taste and trigeminal nerve
response) characteristics of the different sourdough breads as extensively as
possible. The attribute intensities were rated on continuous unstructured, graphical
intensity scales by the panel. The vocabulary, training of the assessors and
implementation of the sensory profiling is described exactly in Publication II.

The descriptive panel consisted of ten trained assessors with proven skills. All
sensory work was carried out at the sensory laboratory of VIT Biotechnology,
which fulfils the requirements of ISO standards (ISO 1985, 1988). All assessors
of the internal sensory panel have passed the basic taste test, the odour test and
the colour vision test. They have been trained in sensory methods during
numerous sessions over several years, and their evaluation ability is routinely
checked using individual control cards for each assessor. The panel was
particularly familiar with the sensory descriptors and the attribute intensities by

49



using verbal definitions describing the ends of the intensity scales of the
attributes. The same panel has also frequently been used in our previous studies
on cereals.

The samples were presented to the assessors coded and in random order. The
control bread without sourdough was thus introduced in evaluations as a hidden,
randomised sample among other samples. Scores were recorded and collected
using a computerised data system (Compusense Five, Ver 4.2, CSA,
Computerized Sensory Analysis System, Compusense Inc, Canada).

2.5 Experimental design and data analysis

The data were analysed using standard statistical procedures as described in the
individual Publication (I-V). The statistical methods are summarised in Table 4.

Table 4. Statistical methods used to analyse the results in Publications I-V.

Publication Applied for data of Statistical methods
number
I Amino acids RSM

pH, TTA correlation analysis

Acetic acid and lactic acid
Volatile compounds

11 Sensory profiling RSM
Specific volume ANOVA, Tukey's HSD
Hardness of bread correlation analysis

111 Specific volume ANOVA, Tukey's HSD

Hardness of bread

v Specific volume ANOVA, Tukey's HSD
Hardness of bread
Starch retrogradation (DSC)
Ratio of liquid/solid protons (NMR)

v pH, TTA, CFU's ANOVA

Biochemical analysis of sourdough Bivariate correlations
and sensory profiling
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2.5.1 Statistical analysis of instrumental measurements and
sensory profiling data

The mean calculations for the raw data obtained were calculated. In II-1V, the
significance of each instrumental measurement/descriptive attribute in
discriminating between the samples was analysed using an analysis of variance
(ANOVA), and Tukey's Honestly Significant Difference (HSD) test
(significance of differences at p < 0.05). A two-way ANOVA was applied as the
general linear model (GLM) procedure for the bread samples using SPSS
software (SPSS Ver. 10.0, SPSS Inc.). ANOVA was used to test the statistical
differences in instrumental measurements/sensory attributes between the
samples, and the statistical difference between the sessions in sensory
evaluations. When the difference among the samples in ANOVA was
statistically significant, pairwise comparisons of these samples were analysed
using Tukey's test. In V, ANOVA was used to estimate the probability that pH,
TTA-values or CFU's of sourdoughs/sourdough breads made with different
strains were statistically different at a confidence level of 95%.

2.5.2 Statistical analysis of sensory profile and instrumental
measurements of bread and the process variables of sourdough

In I-I1, the response surface method (RSM) was applied to study the influence of
selected process parameters (ash content of flour, fermentation time and
temperature) on the biochemical activity of sourdoughs (acidity, amino acids and
volatile compounds) as well as the sensory and texture properties of subsequent
sourdough breads.

RSM is a regression analysis method, which predicts the value of response
variables (e.g. the level of amino acids) based on the controlled values of the
experimental factors (process parameters of sourdough). All of the factors in
RSM were quantitative, based on the results obtained from the experimental
design. The average values of each response were analysed with the multiple
regression method (MLR or PLS), which described the effects of variables in
second order polynomial models. Regression analysis was calculated and the
response surfaces were plotted with the Modde 4.0 and 6.0 (Umetrics AB,
Umeé, Sweden).
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The fit of model to the experimental data was given by the coefficient of
determination, R?, which explains the extent to which the variance in a modelled
variable can be explained by the model. Each model was also validated by
calculating the predictive power of model, Q% which is a measure of how well
the model will predict the responses for a new experimental condition. The
replicates at the centre point made it possible to estimate the pure error of the
analyses, which was used to predict whether the models gave significant lack of
fit. The reproducibility of models was evaluated by comparing the variation of
the response under the same conditions (pure error), at the centre points to the
total variation of the response with the following equation: 1 - (Meansquare
(Pure error) / Mean square (total SS corrected). Only models with high
reproducibility and with no significant lack of fit were included in this study.

2.5.3 Statistical analysis in seeking relations between the sensory
attributes of bread and biochemical activity of wheat sourdough

The biochemical changes in sourdoughs were related to the subsequent bread
flavour by determining the Pearson's coefficients of correlation between the
scores of sensory attributes, amount of amino acids, amount of volatile
compounds and level of acidity (P < 0.05).
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3. Results and discussion

3.1 The influence and interactions of process parameters
and starter culture on the metabolic activity of wheat
sourdough (I)

Controlled sourdough processes require an understanding on the effects of the
process parameters of fermentation on the most relevant biochemical changes
during sourdough fermentation. To obtain this goal, the influence and
interactions of the ash content of flour, fermentation time and temperature on the
formation of acidity, amino acids and volatile compounds were studied by using
experimental design and mathematical modelling. The influence of different
process parameters on biochemical activity of sourdough is summarised in
Tables 5a and 5b. There are no reported studies in which the formation of lactic
acid and acetic acid, amino acids and volatile compounds in response to process
variations would have been simultaneously studied in the same sourdough.

The linear influence of the ash content of flour, fermentation time and
temperature on formation acidity has been well documented in the literature
(Spicher and Nierle 1984, Martinez-Anaya 1994, Rio et al. 1996) and confirmed
also in this study. The most important parameter for increased acidity was the
fermentation time. Fermentation time and temperature had significant interaction
on the formation of acidity with LAB fermented sourdoughs indicating that high
levels of acidity in sourdoughs required both elevated temperature levels and
longer fermentation times, and preferably the use of flour with a high ash
content (wholemeal wheat flour). In earlier studies, however, development of
acidity has not been linked to formation of amino acids and volatile compounds,
which is premise for the improved flavour in wheat sourdough baking. If a lower
acidity level would be preferred in sourdoughs, shorter fermentation time and
reduced temperature would provide moderate acidity levels in all of the studied
sourdough types. It is noteworthy, that temperature had major impact on the
acidity formation but had only small effect on formation of amino acids and
volatile compounds in LAB fermented sourdoughs. Furthermore, interaction of
time and temperature had very strong influence on acidity formation, but only
small influence on formation of amino acids or volatile compounds.
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The level of amino acids was demonstrated to be highly dependent of the ash
content of flour in all of the studied sourdough types. The most intensive
proteolysis occurred in sourdoughs with wholemeal flour and with LAB started
sourdoughs. An increased fermentation time effectively enhanced the levels of
amino acids when wholemeal flour was used, as significant interactions were
observed between these parameters in LAB started sourdoughs. The significant
correlation between TTA and levels of amino acids (r = 0.50—0.86) obtained in
all sourdoughs agrees with the recent hypothesis that the pH dependent
activation of cereal proteases (the highest level present in wholemeal flour) at
low pH is the main reason for proteolysis during sourdough fermentation (Thiele
et al. 2004, Loponen et al. 2004). It is noteworthy that an intensive accumulation
of amino acids did not take place if the low ash content of flour (0.6%, white
wheat flour) was used in sourdoughs, even though long fermentation times and
high temperatures would be used. Thus, the milling rate of flour had great
importance in the regulation of amino acids levels in sourdoughs if process
conditions allowed the pH dependent activation of cereal proteases.

The influence of process parameters on the formation of volatile compounds was
clearly different for yeast and lactic acid bacteria. With pure LAB fermented
sourdoughs, maximum amount of volatile compounds was obtained by using 18
hours fermentation and wholemeal flour, as the linear influence of these
parameters was observed in the formation of volatile compounds. However, the
content of volatile compounds was much smaller in LAB fermented sourdoughs
(10%) in comparison to preferments/sourdoughs fermented with yeast (pure
yeast fermentation or combined yeast and lactic acid fermentation). In yeasted
sourdoughs, frequent interactions and the quadratic effects of the process
parameters were observed, indicating that there was an optimum time window
and level of temperature during fermentation for the formation of a particular
compound. For instance, the optimum formation of 3-methylbutanol (3-MB),
which is one of the important identified flavour active compounds in crumb
flavour (Gassenmeir and Schieberle 1995), was obtained after 14 hours of
fermentation in yeasted preferment, and after longer fermentation time, the
formation of 3-MB deceased. Thus, the optimum formation of wvolatile
compounds during sourdough fermentation required an adjustment of the
process conditions in a strain-dependent manner. So far, studies on the influence
of fermentation time on the formation of volatile compounds during the
prefermentation process are rare.
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The high acidity of sourdough limits its use due to a negative effect both on
bread flavour and texture (Salovaara and Valjakka 1987, Barber et al. 1992).
According to the results of this thesis, the optimum sourdough for flavour
improvement would contain moderate acidity with high levels of amino acids
and certain volatile compounds. Only a few authors (Mori et al. 2001) have
proposed a means to achieve such a designed fermentation process. According to
the results of this thesis, this goal could be obtained by two main approaches: 1)
to use LAB started sourdoughs made with wholemeal flour (ash content of flour
>1.6%) and with fermentation time of 14 hours and fermentation temperature of
22-24 °C. This type of sourdough would contain increased levels of amino acids
with moderated acidity. 2) To use S. cerevisiae fermented sourdough made with
white wheat flour (ash content of 0.6%) with fermentation time of 18-20 hours
and temperature of 32 °C. This type of sourdough would contain a high amount
of volatile compounds with low levels of acidity.

Even though the exact optimum fermentation conditions are valid for particular
strains of this study, strong influence and interactions of process parameters and
their strain-dependent behaviour on the metabolic activity of sourdoughs is
likely to be similar for other sourdough strains as well. Thus, any industrial
sourdough or yeast fermentation process could be designed to produce
maximum amount of flavour compounds or precursors without strong acidity by
using optimised length of fermentation time, level of temperature and ash
content of flour for particular strains present in the system.
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Table 5a. Influence of sourdough process parameters on metabolic activity of

sourdough and sensory attributes of subsequent bread fermented with pure LAB

strain.

Strain/measured
response

Process parameters of sourdough fermentation

Lb. plantarum
Sourdough

Total AA*

Total VC**

pH

TTA

Bread

Pungent flavour
Fresh flavour
Intensity of flavour
Roasted flavour of crust
Aftertaste

Lb. brevis
Sourdough

Total AA

Total VC

pH

TTA

Bread

Pungent flavour
Fresh flavour
Intensity of flavour
Roasted flavour of crust
Aftertaste

Ash content of Time Temperature
flour
ke + +
+++ + +
4+ ++
++ +++ ++
+++ ++ +
++ +++
++ +
++ +++ ++
+++ ++ +
+++ + +
+++ ++ +
4+ +++
++ ++ ++
++ ++
++ ++
+++ ++
++ ++
++ ++

*Total AA= total amount of amino acids, **Total VC= total amount of volatile
compounds*** +++ = parameter has a big influence on formation of metabolite in
sourdough or sensory attribute of bread. + = parameter has a small influence on formation
of metabolite of sourdough or sensory attribute of bread.
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Table 5b. Influence of sourdough process parameters on metabolic activity of

sourdough and sensory attributes of subsequent bread fermented with yeast or

with yeast+LAB.

Strain/measured response

Process parameters of sourdough fermentation

S. cerevisiae
Sourdough
Total AA*
Total VC**

pH

TTA

Bread

Pungent flavour
Fresh flavour
Intensity of flavour
Aftertaste

8. cerevisiae+LLAB
Sourdough

Total AA

Total VC

pH

TTA

Bread

Pungent flavour
Fresh flavour
Intensity of flavour

Roasted flavour of crust

Aftertaste

Ash content of Time Temperature
flour
R
+ +++ ++
+++ +++
+++ ++ ++
+++ ++
+++ ++ +
+++ ++ ++
++ ++
+++ + +
+++ ++ +
+++ ++
++ +++ ++
++ ++
++ ++
+++ ++
+ +
+++ ++

*Total AA= total amount of amino acids, **Total VC= total amount of volatile
compounds*** +++= parameter has a big influence on formation of metabolite in
sourdough or sensory attribute of bread. + = parameter has a small influence on formation
of metabolite of sourdough or sensory attribute of bread.
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3.2 Effect of sourdough process on bread flavour (Il)

The effect of process parameters of sourdough fermentation on subsequent bread
flavour and texture was studied by baking same sourdoughs as in 3.1.1 into
wheat sourdough breads. Thus, the influence and interactions of ash content of
flour, fermentation time and temperature on bread flavour and texture were also
studied using experimental design and mathematical modelling. The influence of
different process parameters in sensory attributes of bread is summarised in
Tables 5a and 5b. This approach also enabled to evaluate the impact of
biochemical changes of sourdough in subsequent bread quality.

In all of the studied sourdough breads, the most important parameter influencing
flavour attributes was the ash content of flour, as the utilisation of low ash
content of flour in sourdoughs resulted in only very minor modifications in
bread flavour in comparison to the control bread without sourdough; as seen in
Figures 1-3 in Publication II. However, modification of bread flavour by
utilising sourdough was also strongly dependent on the fermentation time. Short
fermentation times did not significantly modify most of the bread flavour
attributes, even though a high ash content of flour and higher temperature were
used. The ash content of flour has also earlier been reported to be a major factor
in determining the intensity of the sensory attributes of sourdough bread (Collar
et al. 1994a), sensory scores being highest if low or medium levels of ash
content of flour were used (Rouzaud and Martinez-Anaya 1997). However, if
white wheat flour was utilised, sourdough did not contribute significantly to e.g.
the intensity of the aroma and taste of bread (Martinez-Anaya et al. 1993), which
is in accordance with the results of this thesis.

The potential of wholemeal flour in the modification of flavour is based mainly
on the following facts: i) intensive proteolysis producing amino acids in
wholemeal sourdoughs due the activation of cereal proteases at a low pH if
longer fermentation times are utilised, ii) higher amount of volatile compounds
present in wholemeal flour (Cerny and Schieberle 2001), iii) possible liberation
of phenolic compounds of wholemeal flour during fermentation (Liukkonen et
al. 2003), iv) more intensive acidification taking place with wholemeal flour.

One of the major results of this work was the high correlations between different
sensory attributes, both desired and undesired, in all sourdough types (Table V
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in Publication II). This indicates that fermentation conditions creating e.g the
maximum level of roasted crust flavour and maximum intensity of crumb
flavour and aftertaste (for example, in Figure 1 in Publication II) will inevitably
also result in a very intense pungent flavour and strongly reduced fresh crumb
flavour. Thus, biochemical changes during fermentation, particularly if
wholemeal flour is utilised, are responsible for both desired and undesired
modifications in subsequent bread flavour. Using sourdough as a flavour
improver requires therefore carefully optimised fermentation conditions
providing moderate acidity and enhanced level of amino acids and probably
enhanced level of certain volatile compounds for balanced bread sensory profile.

Furthermore, strain-specific influences on bread flavour were evident in this
study. In general, LAB-containing sourdoughs more effectively modified bread
flavour, both desired and undesired sensory attributes. Sourdoughs containing
yeast modified bread flavour less effectively and roasted crust flavour could not
be enhanced at all with yeasted sourdoughs. Diminished roasted flavour due to
the utilisation of yeasted preferment has also been reported by Zehentbauer and
Grosch (1998). Yeasted preferment has been reported to either improve flavour
(Thiele et al. 2002) or have no effect on bread flavour (Lorenz and Brummer
2003), the opposite results being most likely due to the different processing
conditions of prefermentation and the variation of measured sensory attributes in
different studies.

The strong influence of processing conditions of sourdoughs in subsequent bread
flavour was common for all of the studied sourdoughs. Without optimised
conditions for a particular strain, the utilisation of sourdough did not improve
bread flavour or could easily even create inferior bread flavour in comparison to
the same bread without sourdough. Thus, wheat sourdough fermentation should
be always optimised and run with careful process regime to avoid negative
effects on subsequent bread flavour.

According to the results of this thesis, improved flavour is obtained by using
LAB fermented sourdough containing moderate level of acidity with enhanced
levels of amino acids. A model for such optimised sourdough process is
presented in Figure 3. Balanced flavour could be obtained by choosing e.g Lb.
brevis for a starter and the utilisation of wholemeal flour (high ash content of
flour) for 20 hours at 24 °C. High temperature in combination with long
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fermentation time is a key factor for intensive acidification in LAB fermented
sourdoughs but less important for intensive proteolysis or formation of volatile
compounds, or for sensory attributes of subsequent bread. Thus, utilisation of
lower temperature allows controlling acidity development in sourdoughs and at
the same time high ash content of flour and long fermentation time promotes
proteolysis. Above mentioned model sourdough will enhance intensity of overall
flavour of bread, intensity of aftertaste and roasted flavour of bread crust without
intensive pungent flavour or reduced fresh flavour. Such sourdough would be,
however, in an intensive phase of metabolism and would need and instant
method (such as cooling down or addition of salt) to slow down the fermentation
when optimum level of metabolites is reached.

e Flour with ash content >1.6%
(d.w)
LAB + ¢ Fermentation conditions:
e20h
24 °C

Sourdough

e Moderate acidity (pH 4.6, TTA 11.2, LA 0.5%, AA 0.15%)
¢ Higher concentration of amino acids (290 mg/100 g)
¢ Higher concentration of volatile compounds (197 ug/100 g)

Bread

e Increased intensity of overall flavour, roasted flavour and
after taste without pungent flavour of reduced fresh flavour

Figure 3. A model sourdough (Lb. brevis) for improved bread flavour. LA =
lactic acid, AA= acetic acid.

60



3.3 The relation between bread flavour and the metabolic
activity of wheat sourdough

The influence of the relevant biochemical changes of sourdough fermentation on
subsequent bread flavour was estimated by calculating bivariate correlation
coefficients between the properties of sourdough and the subsequent bread
flavour attributes.

With Lb. plantarum fermented sourdough bread, the intensity of pungent
flavour, intensity of aftertaste and degree of roasted flavour positively correlated
with acidity (TTA and lactic acid), levels of volatile compounds and amino acids
of sourdoughs (Table 6). The degree of fresh flavour was negatively correlated
with acidity and level of volatile compounds, indicating that the utilisation of
sourdough with high metabolic activity results in bread with reduced fresh
flavour. A very high correlation of pungent flavour, aftertaste and the degree of
roasted flavour of bread was observed with TTA and the total amount of volatile
compounds of sourdough (r = 0.83—0.93). This indicates the controversial role of
metabolic activities of sourdough in tuning bread flavour, as both undesired and
desired flavour attributes were enhanced by sourdough fermentation. The
accumulation of amino acids was most highly correlated with the intensity of
aftertaste, degree of roasted flavour and with the intensity of pungent flavour.
The most important amino acids in tuning bread flavour were glutamic acid,
glycine, valine, tyrosine, histidine, lysine, leucine, methionine, phenylalanine
and proline (r = 0.78—0.85). Valine, histidine, lysine, leucine, phenenylalanine
and proline have been linked to improved bread flavour (Collar et al. 1991,
Shieberle and Grosch 1991, Fadel and Hegazy 1993, Gassenmeier and
Schieberle 1995). Phenylalanine and leucine are precursors for two important
flavour compounds of bread crumb, 2-phenylethanol and 3-methylbutanol,
respectively (Gassenmeier and Schieberle 1995) Methionine is a precursor for 3-
metyylithiopropanal and proline is a precursor for 1-acetylpyrroline, which is
responsible for roasted crust flavour (Schieberle 1989).

However, the influence of amino acids seems to be dependent on the
concentration, as higher amounts of e.g valine, glycine and ornithine, have also
been linked to undesired flavour attributes (Suyama and Adachi 1980, Collar et
al. 1991, Thiele et al. 2002). Thus, the same amino acids can be responsible for
the development of a pungent flavour, intense aftertaste, reduced fresh flavour
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and a high degree of roasted flavour; the influence being dependent on the
concentration. For example, ornithine can increase both the degree of roasted
flavour and bitter flavour and the nature of influence is dependent on the
concentration of amino acid as demonstrated by Thiele et al. (2002).

With Lb. brevis fermented sourdough bread, the intensity of a pungent flavour
and the intensity of aftertaste highly correlated to the level of acetic acid and the
total amount of volatile compounds (r = 0.70-0.81, Table 7). Acetic acid has
been postulated to act as a flavour enhancer in minor amounts (Molard et al.
1979) and also reported to cause an unpleasant flavour in higher concentrations
(Molard and Cahagnier 1980). The intensity of aftertaste also highly correlated
to the total amount of amino acids (r = 0.87). The intensity of crumb flavour and
degree of roasted flavour correlated to the total amount of amino acids (r = 0.74—
0.76). However, the intensity of pungent flavour also positively correlated to the
total amount of amino acids (r = 0.76). The most important amino acids in bread
flavour regulation were glycine, serine, valine, methionine, leucine, lysine,
histidine, phenylalanine, and proline and y-butyric acid.

With yeast (S. cerevisiae) fermented sourdough bread, the correlation coefficients
between sourdough and the subsequent bread flavour were generally lower in
comparison to LAB fermented sourdoughs breads. Even though an intensive
formation of volatile compounds occurred in this sourdough (Publication I), the
significant correlation between sensory attributes occurred with the level of amino
acids, (especially with ornithine and proline) and with TTA (Table 8). Thus, the
intensive formation of volatile compounds in yeasted preferments does not seem
to be major factor enhancing subsequent bread flavour. This observation is in
agreement with the results of Brummer and Unbehend (1997), who stated that
flavour improvement to be unlikely when yeasted preferments are utilised.
However, Gassenmeier and Schieberle (1995) have identified the intensive
formation of the flavour active compounds 3-methylbutanol and 2-phenylethanol
in yeasted preferments, but they did not identify the role of these compounds, in
particular, sensory attributes. In yeasted preferments, flour originated acidification
and proteolysis during sourdough fermentation seem to be key factors in the
subsequent modification of bread flavour.

With yeast and lactic acid bacteria fermented sourdough bread, the intensity of
pungent flavour and intensity of crumb flavour and aftertaste correlated
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significantly to acetic acid (r = 0.77, Table 9). The pungent flavour correlated to
the total amount of volatile compounds and especially with 3-methylbutanol and
with ethylacetate (r = 0.72—0.75). the intensity of crumb flavour and intensity of
aftertaste correlated most to the total amount of amino acids; most determinant
amino acids being serine, glycine, valine, methionine, y-butyric acid, histidine,
lysine and proline (r = 0.75-0.85).

The results of this work emphasise the significant role of acidification and
proteolysis during sourdough fermentation in the modification of subsequent
bread flavour. However, the intensive formation of acidity and amino acids
modifies both desired and undesired bread flavour attributes at the same time,
which creates a challenge in achieving balanced wheat bread flavour by utilising
sourdough. The formation of volatile compounds has a particular impact on
pungent flavour and aftertaste, and on degree of roasted flavour. Volatile
compounds originating from sourdough have the least effect on the intensity of
crumb flavour in all studied sourdough types, which may indicate the significant
role of sourdough in producing flavour precursors such as amino acids for actual
yeast fermentation during dough proofing. Dough fermentation during the
baking process has a major role in determining crumb flavour (Baker et al.
1953). However, the utilised analytical method, GC-MS, limits the selection of
volatile compounds to be screened and the utilisation of extract methods such
AEDA (= aroma extract dilution analysis, Schieberle 1996) might have revealed
more influential volatile compounds in flavour modifications, and allowed
differentiation between different volatile compounds and flavour attributes.
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Table 6. Correlation coefficients (r) © between properties of sourdough and
scores of sensory attributes in Lb. plantarum fermented sourdough bread.

Sourdough** [p*** DFr IF1 IA DR
pH -0.64* 0.57* 0.29 -0.44 -0.58
TTA 0.85* -0.81* 0.41 0.83* 0.79*
lactic acid 0.74* -0.74* 0.26 0.71* 0.71*
ethanol 0.79* -0.84* 0.31 054 0.74*
hexanal 0.69* -0.51 0.26 0.54* 0.51%*
diacetyl 0.74* -0.56* 0.30 0.75* 0.59%*
3-methylbutanol 0.71* -0.65% 0.52% 0.73* 0.64*
ethylacetate 0.29 -0.52 0.22 0.37 0.22
Total VC 0.93* -0.77* 0.54%* 0.84* 0.78*
aspartic acid 0.30 -0.32 0.64* 0.42 0.26
threonine 0.48 -0.44 0.54* 0.57* 0.52%*
serine -0.11 -0.15 0.27 0.12%* 0.48
glutamic acid 0.77* -0.75* 0.60* 0.81* 0.71%
glycine 0.69* -0.66* 0.56* 0.77* 0.72*
alanine 0.44 -0.44 0.55% 0.57* 0.48
valine 0.73* -0.74* 0.59* 0.82* 0.76*
tyrosine 0.69* -0.71* 0.61* 0.80% 0.74*
methionine 0.66* -0.69%* 0.51%* 0.77* 0.73*
y-aminobutyric acid 0.67* -0.58%* 0.56* 0.72* 0.62%*
histidine 0.81* -0.76* 0.61% 0.87* 0.79*
lysine 0.79* -0.75* 0.62%* 0.76* 0.78*
leucine 0.79* -0.81* 0.52%* 0.85* 0.82*
phenylalanine 0.72* -0.78* 0.51%* 0.81* 0.78*
ornithine 0.59% -0.55 0.66* 0.67* 0.51%*
proline 0.77* -0.78* 0.57* 0.85* 0.77*
Total AA 0.71% -0.69% 0.62%* 0.81* 0.72%

*For all correlations P<0.05. For values in bold r> 0.70 (positive or negative).
**Total VC= total amount of volatile compounds, Total AA=total amount of amino
acids. ***IP = intensity of pungent flavour, DFr = degree of fresh flavour, IFl =
intensity of overall flavour, IA= intensity of aftertaste, DR= degree of roasted
flavour.
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Table 7. Correlation coefficients (r) * between properties of sourdough and
scores of sensory attributes in Lb. brevis fermented sourdough bread.

Sourdough** [pH** DFr IF1 1A DR

pH -0.55% 0.38 -0.32 -0.44 -0.45
TTA 0.74* -0.49% 0.67* 0.83* 0.65%
Lactic acid 0.61% -0.30 0.50%* 0.71% 0.52%*
Acetic acid 0.70* -0.45 0.61* 0.81* 0.55%*
ethanol 0.45 -0.21 0.31 0.47 0.44

hexanal 0.41 -0.10 0.31 0.009 0.36

diacetyl 0.53* -0.15 0.49%* 0.75* 0.47

3-methylbutanol 0.66* -0.60* 0.64%* 0.73* 0.69

ethylacetate 0.57* -0.19 0.47 0.74* 0.51

Total VC 0.76* -0.52% 0.66* 0.80* 0.68%*
aspartic acid 0.56* -0.55% 0.70* 0.77* 0.72%
threonine 0.63* -0.57* 0.75* 0.77* 0.66*
serine 0.72%* -0.52%* 0.74* 0.88* 0.72*
glutamic acid 0.69* -0.40 0.60* 0.84* 0.63

glycine 0.78* -0.68%* 0.78* 0.83* 0.73*
alanine 0.59* -0.58* 0.73* 0.76* 0.67*
valine 0.71* -0.51% 0.73* 0.88* 0.73*
tyrosine 0.65* -0.54* 0.57 0.53* 0.60

methionine 0.71* -0.51%* 0.78* 0.89* 0.73*
y-aminobutyric acid 0.72* -0.71* 0.78* 0.75* 0.71*
histidine 0.69* -0.49%* 0.69%* 0.85* 0.74*
lysine 0.58 -0.54 0.72* 0.75* 0.69*
leucine 0.51 -0.51%* 0.72% 0.86* 0.73*
phenylalanine 0.69%* -0.42 0.63* 0.85* 0.68%*
ornithine 0.66* -0.45 0.64* 0.84* 0.67*
proline 0.77* -0.45 0.63* 0.77* 0.63*
TotalAA 0.76* -0.64* 0.75% 0.86* 0.75*

* % kkk Abbreviations as in Table 6.
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Table 8. Correlation coefficients (r)" between properties of sourdough and
scores of sensory attributes in S. cerevisiae fermented sourdough bread.

Sourdough** [p*** DFr IF1 IA
pH -0.39 0.04 -0.35 -0.49
TTA 0.84* -0.51* 0.76* 0.77*
isobutanol 0.32 -0.14 0.20 0.28
2-methylbutanal 0.48* -0.44 0.29 -0.29
3-methylbutanal 0.09 -0.19 0.11 0.07
ethanol 0.53* -0.49%* 0.37 0.40
hexanal 0.54 -0.18 0.51%* 0.51*
diacetyl 0.435 -0.16 0.11 0.08
3-methylbutanol 0.51* -0.08 0.39 0.36
ethylacetate 0.57* -0.24 0.62%* 0.79%*
Total VC 0.47* -0.14 0.38 0.39
aspartic acid 0.10 -0.41 0.35 0.25
threonine 0.10 -0.47 0.24 0.13
serine 0.44 -0.61* 0.54* 0.43
glutamic acid 0.77* -0.59* 0.82* 0.92*
glycine 0.78* -0.51%* 0.65* 0.62*
alanine 0.67* -0.55* 0.59* 0.56
valine 0.73* -0.49* 0.55* 0.52*
tyrosine 0.50%* -0.42%* 0.37 0.28
methionine 0.44 -0.55* 0.41 0.25
y-aminobutyric acid 0.76* -0.54* 0.63* 0.58*
histidine 0.77* -0.71* 0.68* 0.61*
lysine 0.36 -0.53%* 0.34 0.19
leucine 0.55* -0.52%* 0.46 0.39%*
phenylalanine 0.61%* -0.48* 0.52* 0.49*
ornithine 0.72* -0.64%* 0.82* 0.84*
proline 0.80* -0.52%* 0.82* 0.82*
TotalAA 0.64* -0.62* 0.62* 0.55%*

* k% %E% Abbreviations as in Table 6.
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Table 9. Correlation coefficients (r)" between properties of sourdough and
scores of sensory attributes in yeast+LAB fermented sourdough bread.

Sourdough** [p* DFr IF1 IA
pH -0.26 0.24 -0.35 -0.24
TTA 0.75% -0.67* 0.76* 0.74*
Lactic acid 0.63* -0.55 0.76* 0.58%*
Acetic acid 0.77* -0.57 0.77* 0.77*
isobutanol 0.61* -0.62* 0.49 0.57
2-methylbutanal -0.002 -0.07 -0.07 -0.03
3-methylbutanal 0.3 -0.42 0.15 0.26
ethanol 0.68* -0.49%* 0.60* 0.71%*
hexanal -0.20 -0.05 -0.18 -0.20
diacetyl 0.40 -0.53* 0.40 0.41
3-methylbutanol 0.72* -0.70* 0.63* 0.66*
ethylacetate 0.75% -0.51%* 0.71% 0.72*
Total VC 0.68%* -0.66* 0.58%* 0.63*
aspartic acid 0.72% -0.57* 0.73* 0.77*
threonine 0.70% -0.62%* 0.72% 0.77*
serine 0.74* -0.57* 0.80* 0.75*
glycine 0.82* -0.72* 0.83* 0.85*
alanine 0.68* -0.58* 0.69* 0.74*
valine 0.73* -0.57* 0.78* 0.73*
tyrosine 0.65* -0.55* 0.61% 0.69*
methionine 0.72% -0.57 0.78* 0.73*
y-aminobutyric acid 0.82* -0.75* 0.79* 0.87*
histidine 0.76* -0.65* 0.85* 0.78*
lysine 0.70* -0.61 0.69% 0.74*
leucine 0.51 -0.35 0.53 0.78*
phenylalanine 0.52* -0.36 0.63* 0.52%*
ornithine 0.54* -0.37 0.65% 0.56*
proline 0.65%* -0.48 0.75* 0.69*
TotalAA 0.80* -0.60* 0.85* 0.82*

* kx kx* Abbreviations as in Table 6.
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3.4 Effect of sourdough on bread volume and staling
(11, 11, 1V)

Influence of both wheat sourdough (II) and bran sourdough (III, IV) on bread
volume and staling was established in this study.

Specific volume

Specific volume could be improved 9-12% by utilising sourdough both in plain
wheat breads (II) and in wheat breads supplemented with 20% of bran
sourdough (f.b) (III, IV). The application of sourdough has been reported to
either increase (Corsetti et al. 2000, Crowley et al. 2002, Clarke et al. 2003b) or
decrease bread volume (Salovaara and Valjakka 1987, Barber et al. 1992); the
type of influence being dependent on the acidification level obtained and the
microbial strains.

In Publication II, improvement of volume was demonstrated to be highly
dependent on the use of optimised fermentation conditions. In addition, the
influence of fermentation conditions was strain-dependent as seen in Figures 4
and 5 in Publication II. In general, the higher ash content of flour resulted in
diminished volume, but the influence of fermentation time and temperature was
different for LAB or yeast containing starters. Yeast fermented sourdoughs
produced the optimum volume with short fermentation times (6 hours) and Lb.
brevis fermented sourdough after 12—14 hours fermented at 22-24 °C. It is
noteworthy that in all sourdough types, utilisation of sourdough did not improve
bread volume if optimised conditions were not used. This result is in accordance
with the work of Clarke et al. (2003b) who demonstrated that optimised
fermentation conditions are strain-dependent and a premise for improved volume.

Optimised conditions for improved volume provided moderate acidity in all
sourdough types (pH 4.9-5.2) and for subsequent breads (pH 5.1-5.5) in I and
II, which is in agreement with the work of Clarke (2003). However, as
chemically acidified counterpart of sourdough has shown to improve bread
volume less effectively, it is most likely that enzymatic modifications of flour
during sourdough fermentation and subsequent changes in dough rheology are
mainly responsible for the improved volume of sourdough breads (Clarke et al.
2002). In this work, combination of a-amylase, xylanase and lipase with bran
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sourdough improved bread volume most efficiently, which agrees with proposed
significance of enzymatic modifications in sourdough baking.

As a result of this thesis, bran sourdough (bran fermented with yeast and/or
lactic acid bacteria) was introduced to effectively improve bread volume in high-
fibre baking, especially when used in combination with a-amylase, xylanase and
lipase. Based on Figure 3 in III and Figure 6 in IV, the addition of bran
fermented with yeast and Lb. brevis for 16 hours results in an improved protein
(gluten) network, increased phase separation of amylose and amylopectin, as
well as a more swollen starch structure. These changes indicate an altered water
distribution between dough components, most likely due to the enzyme activity
of bran and flour. The bran fraction of flour particularly contains high levels of
endogenous enzymes, which might be activated or deactivated during
fermentation. For instance, the endogenous proteases of bran are activated at a
lower pH (Loponen et al. 2004), which allows the modification of gluten
properties in bread dough containing fermented bread and might partly explain
improved volume. In addition, several endogenous xylanases have a pH
optimum at 4.5-5.0 (Rasmussen et al. 2001) and the activity of enzymes
decreases rapidly at higher pH-levels being nearly inactivated at pH 6. Thus, a
lowered pH obtained using sourdough activates the xylanases. The resulting
increased solubility and formation of arabinoxylans with higher molecular
weight has been related to an altered water distribution from the arabinoxylan
phase to the gluten in dough, which results in better gluten extensibility and
improved volume (Maat et al. 1992). Thus, the fermentation of bran may bring
beneficial extra enzymes for bread dough, create optimum conditions for the
activity of several enzymes and modify bran particles as such.

The most effective treatment in volume improvement was the combination of
exogenous enzymes (a-amylase, xylanase and lipase) with bran sourdough
(Publication 1V), suggesting the synergist effects of enzymes and sourdough.
The pH-level obtained in bran sourdough bread (5.5) was most likely low
enough to enhance the effect of xylanases (probably both bran and added ones)
and high enough to maintain alfa-amylase activity for optimum volume. Similar
positive effects of the combination of enzymes and sourdough has been reported
in white wheat baking by Martinez-Anaya et al. (1998) and Di Gagno et al.
(2003), but the idea to improve bread texture in high-fibre baking by combining
fermentation of bran with usage of enzymes has not been presented before.
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Bread staling

After 3—6 days of storage, sourdough bread was 16-30% softer than the control
depending on sourdough type (sourdough made with bran or flour, fermented
either with LAB or/and yeast) and fermentation conditions as reported in
Publications II, IIT and IV. If bran sourdough was combined with the use of
exogenous enzymes, the resulting bread was 70% softer than the control bread
after 6 days of storage (Publication IV). The use of sourdough has been reported
both to decrease (Armero and Collar 1996, Rouzaud and Martinez-Anaya 1997)
and increase shelf-life (Corsetti et al. 1998, 2000); controversial results being
probably due to different fermentation conditions and sourdough types in
different Publications.

According to the results of this thesis, the influence of sourdough on bread
softness during storage depended on fermentation conditions and starter culture.
If fermentation conditions were not optimised in a strain-specific manner, the
use of sourdough did not improve bread softness or even increased bread
hardness (Publication II). In general, the softest bread texture was obtained using
a long fermentation time and low ash content of flour in LAB fermented
sourdoughs (Publication II). Solubilisation of arabinoxylans during extended
fermentation periods is one possible explanation for improved self-life, as high
molecular weight arabinoxylans have been linked to improved softness (Courtin
and Delcour 2002). Production of dextrins, which have ability to interfere with
starch retrogradation, during long fermentation might also explain improved
softness (Rouzaud and Martinez-Anaya 1997). In pure yeast fermentation, the
elevated temperature was crucial to improved softness (Publication II), probably
due to enhanced carbondioxide production in higher temperatures.

The effect of sourdough on improved softness was partly due to an higher volume,
as significant correlation coefficients were established between volume and
softness (r =-0.61-0.96). Furthermore, in bran sourdough breads (Publication IV)
starch retrogradation and the development of molecular rigidity was not
inhibited, which further emphasises improved volume as the main reason for a
better shelf-life in sourdough breads. However, the softest bread texture was
obtained when bran sourdough and use of amylase, xylanase and lipase were
combined, which indicates the modification of starch cell wall polysaccharides.
The above-mentioned enzyme combination did improve shelf-life by itself, but
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the synergistic effects were obvious when enzymes were used with bran
sourdough. For example, enhanced xylanase activity leads to the solubilisation
and degradation of cell wall components (such as pentosans) (Figure 5 in IV),
which could, in turn, lead to an altered water distribution between dough
components and create a softer bread texture. The utilisation of microbial strains
with exogenous enzyme activity (Gobbetti 1998) or the combined use of
sourdough and enzymes (Corsetti et al. 2000) has been reported to retard staling
in white wheat baking. Furthermore, fermentation conditions providing the
optimum softness of breads create moderate acidity in subsequent bread (pH
4.9-5.6), which is near the optimum conditions for the activity of xylanases and
proteases, but does not allow inhibition of a-amylase.

3.5 Inhibition of rope spoilage by wheat sourdough (V)

In this study, the growth of rope-forming Bacillus strains was effectively
inhibited by using wheat sourdough if the acidity level of the sourdough and
subsequent bread was low enough. Antimicrobial activity of sourdoughs
fermented with Lb. plantarum, Lb. brevis or with Pediococcus pentosaceus was
evident if the pH of sourdough was <4 and TTA > 12, and the pH of sourdough
bread was 4.8-5.1 and TTA 4.8-6.2 and the concentration of lactic acid was 1.5—
1.7 g/100g of sourdough. However, the same LAB were ineffective if the pH was
higher and TTA was lower (pH 4.1-4.9 and TTA 3.9-5.4 for sourdoughs and pH
5.4-5.6 and TTA 2.8-3.7 for subsequent breads) indicating the strong role of
acidity in rope prevention. This result is in accordance with work of Rosenquist
and Hansen (1998), as they concluded that the level of acidity and not the
properties of LAB are determinant in rope prevention. However, the addition of
pure lactic acid in comparable concentrations to reach a pH-level of 4.9-5.0 did
not prevent rope spoilage as indicated in Table 6 in V. Thus, the combined effect
of the production of antimicrobial compounds by the selected LAB with a low pH
was assumed to explain the observed antimicrobial effect.

It is noteworthy that the observed demand of low pH in sourdough breads for
antimicrobial effect is not in line with the optimum acidity level for the sensory
quality of the same breads. In II, Lb. plantarum (VIT E-76) fermented bread
had the optimum predicted bread flavour, if fermentation was carried out e.g. at
32 °C for 6 hrs and made with flour having an ash content of 1.6% These
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conditions provided a pH 5.7 and TTA 3.8 for subsequent bread and such acidity
levels are unlikely to promote microbiological shelf-life.

Mold growth was not reported in Publication V even though appearance of mold
was also recorded during visual checking of bread slices to observe rope
spoilage. In general, mould growth was not observed in sourdough breads with
pH level < 4.9 and higher pH-levels promoted mold growth. Antimould activity
of different LAB strains has been reported (Lavermicocca 2000) and some
strains appears to be active even with higher pH-levels (Clarke et al. 2004).
However, role of acidity in the performance of different antimould strains
requires further studies to evaluate potential of sourdough to promote
microbiological shelf-life without deteriorating flavour.
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4. Conclusion and future outlook

The influence and interactions of sourdough process conditions on the metabolic
activity of sourdough and subsequent bread quality (flavour and texture) were
studied in this thesis. The levels of acidity, amino acids and volatile compounds
of wheat sourdoughs were related to the subsequent bread quality. A new type of
sourdough, bran sourdough, was introduced to compensate for the negative
effect of bran addition on bread volume and shelf-life. The staling mechanism of
high-fibre bran breads was studied using versatile physical methods. The
potential of LAB sourdoughs to prevent rope spoilage was also studied.

The use of sourdough as a flavour improver has long been well established.
However, according to the results of this thesis, the improved bread flavour
required carefully optimised fermentation time, temperature and ash content of
flour in a strain-specific manner to achieve a balanced flavour profile between
desired und undesired flavour attributes. This fermentation window for balanced
flavour must be defined, because the development of desired and undesired
flavour attributes of bread were highly correlated in the sourdough process,
probably because formation of sensory attributes were based on the same
metabolic events during sourdough fermentation. Without optimised conditions,
the use of sourdough did not improve bread flavour or resulted in inferior bread
flavour. The most effective improvement in flavour was obtained with pure LAB
fermented sourdoughs by using long fermentation time, high ash content of flour
and reduced temperature. Desired flavour development was related mainly to the
moderate development of acidity and enhanced proteolysis during sourdough
fermentation. The role of volatile compounds formed during prefermentation
was less important in flavour enhancement. Proteolysis during sourdough
fermentation correlated strongly to the acidity development, which complicates
flavour improvement due to the strong role of acidity in the enhancement of
pungent flavour and reduced fresh flavour.

Usage of traditional wheat sourdough is limited to 5-10% due to high acidity
levels of sourdough. This study introduced designed fermentation process to
obtain sourdough with moderate acidity level and enhanced levels of flavour
precursors and flavour compounds, which allows increasing amount of
sourdough to be used in subsequent bread dough. Accordingly, the amount of
flour to be pre-fermented is increased when higher amount of sourdough is used
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in the final product. This result is important in future applications of sourdough
aiming for improved nutritional value of cereals (either refined or wholemeal
flour, or different milling fractions), as higher amounts of mildly flavoured,
nutritionally improved fermented flour or milling fraction can be used in
subsequent cereal products.

The future prospects of flavour improvement by utilising sourdough could
include the combined use of appropriate exogenous proteases, preferably with a
higher pH optimum, with sourdough fermentation to obtain more intensive
proteolysis at moderate acidity levels. The definite advantage of using proteases
at the sourdough stage instead of the dough preparation stage is the more reliable
control over the extent of proteolysis in sourdough. The use of proteases at the
dough stage easily results in an inferior texture due to the utmost importance of
proteins in the structure forming components of wheat bread.

Improved volume and softness of bread during storage was also obtained under
optimised fermentation conditions, which were strain-dependent. The optimum
volume of all sourdough breads was obtained at moderate acidity, which also
creates nearly optimum conditions for several endogenous enzymes. Thus,
improved volume and softness is most likely due to the combination of
appropriate acidity and favourable modification of dough components (such as
proteins and pentosans) by enzymatic activity of flour/bran. Future research
challenges will be to more thoroughly understand e.g the state of arabinoxylans
in sourdough fermentation and their relations to bread volume and shelf-life. The
possibility of enhancing the technological potential of sourdough with the
production of exopolysaccharides is one of the future prospects, as well as the
combined use of exogenous enzymes and sourdough for improved texture.

A high acidity sourdough was shown to be an effective way of inhibiting rope
spoilage in wheat bread and the same influence at a comparable pH level could
not be obtained with pure acids. However, the strong acidity required for rope
prevention will inevitably lead to undesired flavour characteristics such as a
pungent flavour as well as reduced volume. The enhancement of microbial shelf-
life with sourdough may be more suitable for wholemeal baking, in which the
acidity level for the accepted flavour is less critical, or requires the development
of starters with high antimicrobial properties also at higher pH-levels.

74



This thesis introduced a new method, bran sourdough, to overcome deleterious
effect of bran addition in high-fibre baking. Particularly in combination with a-
amylase, xylanase and lipase, the utilisation of bran sourdough effectively
improved the volume and shelf-life of wheat bread supplemented with 20%
bran. The improved macroscopic texture was related to profound changes in the
microstructure of bran sourdough breads. Bran prefermentation improved the
protein network and the increased swelling of starch granules of bran breads.
During aging, the lower staling rate of bran sourdough breads with a-amylase,
xylanase and lipase was related to an altered water distribution between dough
components, reduced amylopectin recrystallisation and slower loss of molecular
mobility.

A method to improve the quality of high-fibre wheat bread using bran sourdough
is novel and offers interesting challenges for future applications. There is
growing evidence of significant health benefits of whole grain. The major
potential of whole grain originates from outer layers of the kernel, especially in
the bran fraction, where the most interesting health-promoting compounds are
located. Furthermore, according to recent results, sourdough fermentation can
significantly enhance levels of potential health-promoting compounds in whole
grain foods, especially if combined with the high enzyme activity of the raw
material. Thus, the fermentation of bran can effectively modify texture, flavour,
and nutritional value of wheat or other cereals.

In conclusion, this study determined fermentation window for balanced bread
flavour in wheat sourdough baking by using statistical design and mathematical
modelling. Improved, balanced flavour was related to moderate acidity and
enhanced levels of amino acids and volatile compounds in sourdough. A novel
method, bran sourdough, was introduced to overcome deleterious effect of bran
addition in high-fibre baking. In the future, bran sourdoughs or other fermented
milling fractions can be designed to produce nutritionally and technologically
superior raw materials for all cereal foods, such as bread, breakfast and snack
foods.
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