Sustainable electronics at VTT

31/03/2021 VTT – beyond the obvious
Sustainable development aims to meet the needs of present generations without jeopardising the ability of future generations to meet their own needs.

It provides a comprehensive approach bringing together economic, social and environmental considerations in ways that mutually reinforce each other.

EU committed to implementing the 2030 Agenda for Sustainable Development and the SDGs.
Motivation for sustainability in flexible electronics

Global electrical and electronic waste production increasing with 6.5 CAGR%\(^1\) with only 20% collected/recycled properly\(^2\).

Global consumption of material resources expected to more than double between 2015 and 2050\(^3\).

\(^1\)Sullivan, M. Printed Electronics: Global Markets to 2022, BCC Research LLC. 2018
\(^2\)Ellen MacArthur Foundation. Circular consumer electronics: an initial exploration. 2017
\(^3\)European Union reflection paper. Towards a Sustainable Europe by 2030. January 2019
Drivers and tools for sustainable flexible electronics

- New functional properties
- Improved performance
- Need for end-of-life solutions (cradle-to-cradle)
- Need for reduction of carbon footprint
- Limited availability of raw materials
- Possibility to use abundant and cost-compatible materials

Energy and material efficient manufacturing
Materials from renewable resources
Bio-degradable / compostable materials
Eco-design, circular design
Recycle, reuse, repair
VTT tackles sustainable development through multidisciplinary competences in biomaterial development and printed and hybrid electronic

- Additive manufacturing process – low emissions and losses
- Possibility to use wide selection of substrate materials including biobased, compostable and recyclable materials
- New functionalities through bio-materials

Our goal – Implementation of bio-based materials as a new normal in electronics.
Research topics towards sustainable solutions for flexible electronics

- Renewable, biobased and biodegradable substrates and overmolding materials
- Abundant materials for conductors
- Functional components and materials based on intrinsic material properties
- Sustainable powering solutions
Pioneering work in printed paper based hybrid electronics

Wireless sensor devices on a paper surface which are manufactured by using high-end and low-cost printing techniques.

- Open/close detection in shipping of valuable goods
- Humidity and temperature sensing in shipping of precious goods (paper-based humidity sensors)
- Tracking and tracing of registered post

EU FP7 ROPAS (2011-2015)
Silicon on paper

- Paper based hybrid electronics
- Sustainable temperature logger tag
- Paper + bare-die ultra-thin RFID temperature sensor chip

Courtesy of American Semiconductor

https://www.youtube.com/watch?v=CbMFW00LcQ
Sustainability through

- Selecting highly recyclable and compostable materials
- Promoting environmentally friendly manufacturing technologies to reduce use of materials
- Developing the methodology to recover the materials
- Quantifying the environmental impact of the developed solutions
Material development
- Sustainable substrates: cellulose based, paper coatings, bio-plastics, bio-composites
- Inks: e.g. metal replacement
- Adhesives: e.g. low temperature alternatives

Printed components development for energy module with innovative product design
- Super-capacitor, OPV, diodes

Life-cycle
- Assessment, repulpability, deinking

Sustainable R2R processing
- Printing, hot embossing, over moulding, assembly, converting

PCB design and testing on sustainable substrates
https://www.ecotronics.fi
Application of bio-based materials for printed, hybrid and structural electronics

Benchmarking of several bio-based materials

- Film processing
- Mechanical and thermal properties
- Stability (temperature)
- Performance in printed and hybrid electronic applications (resistance of printed test patterns)
- Printing, hybrid-integration overmolding

Bio-based electronics applicable as lightweight, functional structures e.g. in automotive industry.

Luoma et al. (2021) J. Plastic Film & Sheeting 0(0) 1-34
BIOBOAT – A sensor for clean indoor air built using bio-based materials

Biopolymer-based sail

- Printed, hybrid integrated and overmoulded
- LED indicators for informing of air quality (CO2)
- Electrical performance improved in comparison to reference polymers

3D-printed, cellulose-based and recyclable boat housing the electronic module.

Lights turn from GREEN to RED with increasing CO2 levels due to insufficient indoor ventilation or crowded space.
Replacement of silver based conductors with more abundant and inexpensive substitutes

- **C**
 - Est. 1 – 10 €/kg
 - 1-10 Ω/□*
 - **

- **Cu**
 - 6 €/kg
 - 0.01-0.05 Ω/□*

- **Ag**
 - 680 €/kg
 - 0.005-0.01 Ω/□*

* Typical values for printed layer
** As graphene ink
Flexible and textile integrated electronics based on graphene

- **Capacitive touch sensitive electrodes on fabric** based on screen-printed conductive areas
 - Graphene pattern printed on polyurethane thin film laminated inside a t-shirt
 - 10% stretching of conductive wires without significant loss in conductivity demonstrated

- **Low-cost screen-printed graphene antennas** for near-field UHF RFID transponders

Jaakkola et al. (2020) 2D Materials 7(1) 9 p. 015019
Paper based humidity sensors

- An inkjet-printed relative humidity sensor based on capacitive changes responding to different humidity levels in the environment.
- Interdigitated silver electrodes on the paper substrate - paper itself as a sensing material.

C. Gaspar et al., Sensors 2017, 17, 1464; doi:10.3390/s17071464
Optical cellulose materials enables new sustainable sensors for multiple application fields

Orelma et al. "Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications," Cellulose 27, 1543-1553 (2020)
Further possibilities for batteries with high safety and lower environmental impact

- Abundant materials
- Renewable materials
- Safe materials
- Organic, bio-based radicals
- Solid state
- Bio-based carbon
- Cellulose, bio-polymers
- Compostable materials?
- Long lifetime
- Na, biomass etc.
- Sustainable batteries

Outcomes: Sustainable batteries - beyond the obvious
Printed biofuel cell – Biobattery

- **Disposable, printed enzyme** based power source convert chemical energy into electricity via mediated enzyme catalysis
 - Open cell voltage: 0.4 V, appr. 1 V with Zn anode
- Can be **activated with addition of moisture** (e.g. water, buffer, glucose containing drink, body fluids)
- Possible application in **skin care**

Resource sufficiency is a global challenge concerning all businesses
Sustainability as a business approach is becoming widely adopted by companies and organisations around the world
Greener operations, products and sustainable materials are the key!
VTT’s multidisciplinary experts are working together for greener tomorrow!

Liisa Hakola
Jukka Hast
Kirsi Immonen
Panu Lahtinen
Tapio Mäkelä
Hannes Orelma
Henrik Sandberg

Maria Smolander
Laura Sokka
Katariina Torvinen
Marja Välimäki
Marja Vilkman
Lisa Wikström
and many others!

Contacts
maria.smolander@vtt.fi
liisa.hakola@vtt.fi
Thank you!

@VTTFinland

www.vttresearch.com