Sign In
Information about science based innovations, solid facts to support decision-making, performance and business development for VTT’s partners, customers and anyone interested in high technology and its applications.
A magazine on science, technology and business

Figure 1. Biofuels can readily utilize chemical mixtures where as the fine chemicals industry cannot.

Biobased aromatics essential to the fine chemical industry

Matti Reinikainen, David Thomas | 26.5.2015

​Woody biomass is a versatile resource and has long been used for everything from building materials to paper and oils. Although the forests of Finland are expanding at a faster rate than they are being used there is a decline in pulp and paper consumption and the traditional companies in this area are to look at alternative ways to utilize this resource. 

The Finnish bioeconomy strategy jointly put forward by the Ministry of Employment and the Economy, the Ministry of the Environment and the Ministry of Agriculture and Forestry stated how they wish to increase the turnover in bioeconomy from €60bn  to €100bn  and in the increase 100 000 new jobs in the area in Finland by 2025. At the same time the demand for chemicals from renewable sources has rapidly increased and there is an urgent need for alternative, preferably “green” production routes. One of the most sought after chemicals are pure aromatic hydrocarbons, such as benzene, toluene and xylene (BTX). 

The chemical industry expands into every aspect of our daily lives, giving us everything from plastics and fuels to medicines and paints. Traditionally crude oil has been utilized because of the diversity of chemicals that can be obtained from it, and because it is one of the few sources of aromatic available. Obtaining chemical products from biomass is an expanding area, especially the production of the traditional chemical raw materials used in everyday life, that is to make “drop-in” replacement chemicals from an alternative raw material; this raw material may include, for example, sugars, vegetable oils and woody biomass. The purity and consistent production of biobased chemical products is one major aspect which needs to be overcome before they are readily taken-up by major industry players. As a result the market for biofuels has been initially pursued as chemical mixtures can be used without complex purification. This unfortunately is not the case for the fine chemicals industry in which the typical purity requirement of a chemical product is over 98 % (figure 1).This increased value is directly reflected in the increased value of BTX and it’s pure fractions compared to fuel mixtures.  

In the iBet project Thermochemical Bioeconomy – Integrated production of bioaromatics, other chemicals, fuels and energy, we have produced a feasible and highly selective concept for the manufacture of BTX from woody biomass. The developed processes will drastically alleviate the dependency on fossil raw materials in chemicals while facilitating the efficient conversion of domestic biomass to valuable products and energy. A demonstration facility with the ability to prepare high-quality bio-BTX in multi- kilogram scale is being built at the Bioruukki plant in Espoo. This plant will be use to further develop the synthetic route, to access the techno-economics of the process and take the next steps towards a commercial process.


 

Figure 2. Illustration of how gasification can lead from woody biomass to a vast range of potential products.


 

Biomass gasification

Gasification is a process in which the woody biomass is converted into what is known as syngas, consisting mainly of carbon monoxide and hydrogen, by heating to high temperatures above 800⁰C) without combustion and with a controlled amount of oxygen. In principle syngas reactions are not dependent on the raw material, though there are still relevant differences. Although gasification itself is an established technology, there is much less experience of biomass gasification and gas purification. The distinctive characteristic of biomass-fuelled plant is its scale–biomass gasification plants are principally one or two orders of magnitude smaller than plants using coal or natural gas. Catalytic Fischer-Tropsch is a process in which carbon monoxide and hydrogen gases are recombined into a mixture of hydrocarbons which can be used either as transportation fuel or as a source for further processing to chemicals. A good database on Fischer-Tropsch synthesis can be found in reference . Biomass gasification, gas cleaning and synthesis gas conversion to valuable products have been extensively studied at VTT. A recent report summarizes the detailed techno-economic assessment of 20 individual plant concepts based on a large scale (300 MWth) gasifier. 

Despite the successful demonstration of the technology there are not any commercial production units in operation which is due to very high investment cost of first-of-a-kind plant as well as significant political uncertainties. In order to improve the economics and help the commercialization VTT has developed new processes suitable for smaller plant sizes. The bio-BTX process presented here is one example of such a process suitable for scales of 50–100 MWth.


 

Synthesis of high selectivity benzene, toluene and xylene (BTX)

Combining biomass gasification, Fischer-Tropsch-synthesis and aromatization has allowed us to prepare BTX in high selectivities (Figure 2). 

A new two-stage tubular reactor system was constructed for the manufacture of BTX (figure 3). Synthesis gas (syngas) produced by biomass gasification is used as the raw material. Light aromatics formed in the gasification are separated and combined with the synthesis product. In the first synthesis step a product mixture rich in olefins and oxygenates is produced from synthesis gas over an iron catalyst promoted by silicon, copper and potassium. In the second stage, the whole product from the first step reacts further to a mixture of aromatic hydrocarbons over a ZSM-5-catalyst modified with lanthanum and zinc. The reaction is carried out at significantly lower pressure than usually employed in the Fischer-Tropsch synthesis. Low reaction pressure (<15 bar) both favours the formation of desired olefins and lowers the cost of the process. The principle of the reactor setup is depicted in Figure 4. 

A hydrocarbon product with an exceptionally good selectivity to benzene, toluene, xylenes is formed. Typical product composition of the aromatic fraction is illustrated in Figure 5 with the distribution controlled by temperature and space velocity. To our knowledge this is the first example of a process capable of producing BTX-components with such a high selectivity from biomass.


 

Figure 3. Two-phase reactor system for the production of BTX.


 


 

Figure 4. Reactor setup. 


 

Purification of BTX

Although in theory a potentially very straightforward purification there are no literature reports of successful purification from BTX mixtures produced from either syngas or biomass. Such purification opens a very significant door to unlocking the ability to produce pure BTX fractions from biomass. The quality of the crude material was determined by GC-MS to contain a majority of toluene (42.8%) and benzene (23.0 %) (figure 6). The highly mobile liquid was of excellent physical composition for direct handling in the lab without any need for pretreatments, for example, filtration or preheating.

The crude BTX-product was purified by atmospheric Vigreux distillation and cryogenic crystallization. Pure BTX components could be isolated in good purity (>80%) with over 85 % of the available benzene obtained with greater than 90 % purity with the impurity being toluene. 

With pure benzene and toluene having been isolated in good recovery (over 49 % of the total available product) from the BTX mixture the next step is to valorize the material into a valuable bio-based compound that can be used in a specific niche. For this purpose it is excellent to illustrate the quality of the material by undertaking a complex synthetic step, for example, the manufacture of bio-paracetamol (figure 7).


 

Figure 5Product distribution of the aromatic mixture. produced.


 

Figure 6. Composition of the supplied crude BTX.​


 

Conclusions

We have been able to demonstrate that woody biomass can be successfully and selectively converted into benzene, toluene and xylene (BTX). Over 85 % of available benzene was isolated at over 90% purity along with almost 50 % of available toluene isolated at 70% purity (“contaminant” is xylene). The preliminary price for pure BTX fractions is calculated at €1,4 per litre which, although currently more expensive than the current crude-oil derived material (€~1.0 per litre), but a lot more competitive than other equivalent bio-based routes.

This process finds direct application in producing drop-in bio-based platform chemicals, however, both the benzene and toluene can be valorised into more useful niche compounds sure as paracetamol. This complex synthetic route is another demonstrator of the high quality of the aromatics produced by this method.

With a realistic and highly-efficient process in our hands the scale-up has begun at VTT’s BioRuukki facility. To demonstrate the industrial feasibility of the process VTT plans to prepare multi-kilo quantities of material on a tubular flow reactor. 


 

Figure 7. Illustrating the quality of the benzene produced by the synthesis of paracetamol.  


 

Matti Reinikainen

Matti Reinikainen (DSc Chemical Engineering) is a Principal Scientist in the Catalysis and synfuels group. Matti obtained his doctorate from Helsinki University of Technology and has been a key player in catalysis research at VTT for more than 25 years. Matti has 28 peer reviewed publications and 7 patents. Currently he is working with biomass based chemicals as well as special gas chromatographic analysis techniques.


 


 

David Thomas

David Thomas (Ph.D in chemistry) is a Senior Scientist in the Chemical synthesis and polymerization technologies group. David studied for his doctorate in photochromic chemistry from the University of Leeds, England. He is experienced in industrial synthesis and process optimisation, having spent over 9 years working in industry. David has 7 peer reviewed publications and 2 patents. Currently he is involved with biomass valorization, advanced spectroscopy and purification.​


 


 

References

Ministry of employment and the economy, 8.5.2014

ii T. Werpy, G. Peterson, Top Value Added Chemicals from Biomass, August 2004, http://www.plasticstoday.com/articles/anellotech-successfully-produces-kilogram-scale-green-BTX-140527

iii A. Stranges (Ed.), Fischer-Tropsch-arkisto, http://www.fischer-tropsch.org, read 16.3.2015.

iv I. Hannula and E. Kurkela, Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass; VTT Technology 91, 2013.

v WO 94/01394, 1994. World Intellectual Property ­Organization.​

 

 

VTT Impulsehttps://www.vttresearch.com/ImpulseVTT Impulse
Online banking for stiff fingers and weak eyeshttps://www.vttresearch.com/Impulse/Pages/Online-banking-for-stiff-fingers-and-weak-eyes.aspxOnline banking for stiff fingers and weak eyes
Risk management in an increasingly complex worldhttps://www.vttresearch.com/Impulse/Pages/Risk-management-in-an-increasingly-complex-world.aspxRisk management in an increasingly complex world
Ambassadors of service-mindednesshttps://www.vttresearch.com/Impulse/Pages/Ambassadors-of-service-mindedness.aspxAmbassadors of service-mindedness
Finland provides community housing solutions for Namibiahttps://www.vttresearch.com/Impulse/Pages/Finland-provides-community-housing-solutions-for-Namibia.aspxFinland provides community housing solutions for Namibia
Passion spurs researchhttps://www.vttresearch.com/Impulse/Pages/passion-spurs-research.aspxPassion spurs research
Industrial 3D printing takes offhttps://www.vttresearch.com/Impulse/Pages/Industrial-3D-printing-takes-off.aspxIndustrial 3D printing takes off
Minima Processor LTD – World record in energy efficiency accelerates development of IoThttps://www.vttresearch.com/Impulse/Pages/Minima-Processor-LTD-World-record-in-energy-efficiency-accelerates-development-of-IoT.aspxMinima Processor LTD – World record in energy efficiency accelerates development of IoT
Impulse 1/2017https://www.vttresearch.com/Impulse/Pages/Impulse-1-2017.aspxImpulse 1/2017
Impulse 2/2017https://www.vttresearch.com/Impulse/Pages/Impulse-2-2017.aspxImpulse 2/2017
Maintenance support for astronautshttps://www.vttresearch.com/Impulse/Pages/Maintenance-support-for-astronauts.aspxMaintenance support for astronauts
International entrepreneurship does not happen overnight it needs to be nurturedhttps://www.vttresearch.com/Impulse/Pages/International-entrepreneurship-does-not-happen-overnight-it-needs-to-be-nurtured.aspxInternational entrepreneurship does not happen overnight it needs to be nurtured
Gerontechnology providing everyday assistance and safetyhttps://www.vttresearch.com/Impulse/Pages/Gerontechnology-providing-everyday-assistance-and-safety.aspxGerontechnology providing everyday assistance and safety
The story of Finlandhttps://www.vttresearch.com/Impulse/Pages/The-story-of-Finland.aspxThe story of Finland
Finland’s old nuclear research reactor to be decommissioned – New Centre for Nuclear Safety under constructionhttps://www.vttresearch.com/Impulse/Pages/Finlands-old-nuclear-research-reactor-to-be-decommissioned-new-centre-for-nuclear-safety-under-construction.aspxFinland’s old nuclear research reactor to be decommissioned – New Centre for Nuclear Safety under construction
Impulse 1/2016https://www.vttresearch.com/Impulse/Pages/Impulse-1-2016.aspxImpulse 1/2016
Jari Gustafsson: Old and new workhorses as recession beatershttps://www.vttresearch.com/Impulse/Pages/Old-and-new-workhorses-as-recession-beaters.aspxJari Gustafsson: Old and new workhorses as recession beaters
Senior Scientist Jukka Hemila, VTT: From technology hype to customer understandinghttps://www.vttresearch.com/Impulse/Pages/Senior-Scientist-Jukka-Hemila-VTT-From-technology-hype-to-customer-understanding.aspxSenior Scientist Jukka Hemila, VTT: From technology hype to customer understanding
Quantum standards for the new SI systemhttps://www.vttresearch.com/Impulse/Pages/Quantum-standards-for-the-new-SI-system.aspxQuantum standards for the new SI system
Small is big: growth and new opportunities in silicon photonicshttps://www.vttresearch.com/Impulse/Pages/Small-is-big-growth-and-new-opportunities-in-silicon-photonics.aspxSmall is big: growth and new opportunities in silicon photonics
Robotics – technology with multi-faceted potentialhttps://www.vttresearch.com/Impulse/Pages/Robotics-technology-with-multi-faceted-potential.aspxRobotics – technology with multi-faceted potential
Digital ecosystems are emerginghttps://www.vttresearch.com/Impulse/Pages/Digital-ecosystems-are-emerging.aspxDigital ecosystems are emerging
The energy sector is jointly preparing for cyber threatshttps://www.vttresearch.com/Impulse/Pages/The-energy-sector-is-jointly-preparing-for-cyber-threats.aspxThe energy sector is jointly preparing for cyber threats
Pervious pavements – new solutions to prevent urban floodinghttps://www.vttresearch.com/Impulse/Pages/Pervious-pavements-new-solutions-to-prevent-urban-flooding.aspxPervious pavements – new solutions to prevent urban flooding
LED foils can be bent into any shapehttps://www.vttresearch.com/Impulse/Pages/LED-foils-can-be-bent-into-any-shape.aspxLED foils can be bent into any shape
Technology enables good urban livinghttps://www.vttresearch.com/Impulse/Pages/Technology-enables-good-urban-living.aspxTechnology enables good urban living
An export product tougher than nailshttps://www.vttresearch.com/Impulse/Pages/An-export-product-tougher-than-nails.aspxAn export product tougher than nails
Transport gets smarthttps://www.vttresearch.com/Impulse/Pages/Transport-gets-smart.aspxTransport gets smart
VTT’s spin-off GrainSense puts a laboratory in farmers’ handshttps://www.vttresearch.com/Impulse/Pages/VTTs-spin-off-GrainSense-puts-a-laboratory-in-farmers-hands.aspxVTT’s spin-off GrainSense puts a laboratory in farmers’ hands
Towards bioeconomy with the power of woodhttps://www.vttresearch.com/Impulse/Pages/Towards-bioeconomy-with-the-power-of-wood.aspxTowards bioeconomy with the power of wood
Modelling and simulation facilitateshttps://www.vttresearch.com/Impulse/Pages/Modelling-and-simulation-facilitates.aspxModelling and simulation facilitates
Pilot plants forge innovative ideas into business activitieshttps://www.vttresearch.com/Impulse/Pages/Pilot-plants-forge-innovative-ideas-into-business-activities.aspxPilot plants forge innovative ideas into business activities
We cannot afford not to have robotshttps://www.vttresearch.com/Impulse/Pages/We-cannot-afford-not-to-have-robots.aspxWe cannot afford not to have robots
Digitalization in RTOs: Speeding up the development of bio-based technologies with digitalizationhttps://www.vttresearch.com/Impulse/Pages/Digitalisation-in-RTOs-Speeding-up-the-development-of-bio-based-technologies-with-digitalization.aspxDigitalization in RTOs: Speeding up the development of bio-based technologies with digitalization
Multifunctional polysaccharides open up new opportunities for the food processing industryhttps://www.vttresearch.com/Impulse/Pages/Multifunctional-polysaccharides-open-up-new-opportunities-for-the-food-processing-industry.aspxMultifunctional polysaccharides open up new opportunities for the food processing industry
Optical isotope spectroscopy – More and more detailed informationhttps://www.vttresearch.com/Impulse/Pages/Optical-isotope-spectroscopy-more-and-more-detailed-information.aspxOptical isotope spectroscopy – More and more detailed information
Looking through their eyeshttps://www.vttresearch.com/Impulse/Pages/Looking-through-their-eyes.aspxLooking through their eyes
Salofa creates rapid tests for monitoring health and the environmenthttps://www.vttresearch.com/Impulse/Pages/Salofa-creates-rapid-tests-for-monitoring-health-and-the-environment.aspxSalofa creates rapid tests for monitoring health and the environment
Digitalisation in closing the gaphttps://www.vttresearch.com/Impulse/Pages/Digitalisation-in-closing-the-gap.aspxDigitalisation in closing the gap
Can a phone help you achieve peace of mind?https://www.vttresearch.com/Impulse/Pages/Can-a-phone-help-you-achieve-peace-of-mind.aspxCan a phone help you achieve peace of mind?
Sensor of tomorrowhttps://www.vttresearch.com/Impulse/Pages/Sensor-of-tomorrow.aspxSensor of tomorrow
The new agenda enhances the use of research infrastructurehttps://www.vttresearch.com/Impulse/Pages/The-new-agenda-enhances-the-use-of-research-infrastructure.aspxThe new agenda enhances the use of research infrastructure
Biobased aromatics essential to the fine chemical industryhttps://www.vttresearch.com/Impulse/Pages/Biobased-aromatics-essential-to-the-fine-chemical-industry.aspxBiobased aromatics essential to the fine chemical industry
Impulse 1/2018https://www.vttresearch.com/Impulse/Pages/Impulse-1-2018.aspxImpulse 1/2018
Return on investmentshttps://www.vttresearch.com/Impulse/Pages/Return-on-investments.aspxReturn on investments
Finland is aiming towards smart transporthttps://www.vttresearch.com/Impulse/Pages/Finland-is-aiming-towards smart-transport.aspxFinland is aiming towards smart transport
Finnish wheels will keep on turninghttps://www.vttresearch.com/Impulse/Pages/Finnish-wheels-will-keep-on-turning.aspxFinnish wheels will keep on turning
Raw material for fuels, chemicals and food from atmospheric carbon dioxidehttps://www.vttresearch.com/Impulse/Pages/Raw-material-for-fuels-chemicals-and-food-from-atmospheric-carbon-dioxide.aspxRaw material for fuels, chemicals and food from atmospheric carbon dioxide
Digitalisation of the shipping industry requires cutting-edge researchhttps://www.vttresearch.com/Impulse/Pages/Digitalisation-of-the-shipping-industry-requires-cutting-edge-research.aspxDigitalisation of the shipping industry requires cutting-edge research
Novel Cellulose products and applicationshttps://www.vttresearch.com/Impulse/Pages/Novel-Cellulose-products-and-applications.aspxNovel Cellulose products and applications